
Eventual Consistency in Mnesia

Shuntian Liu

Magdalene College

Sat 17th Jun, 2023

Submitted in partial fulfilment of the requirements for the
Computer Science Tripos, Part III

Total page count: 84
Main chapters (excluding front-matter, references and appendix): 39 pages (pp 1–39)
Main chapters word count: 11876
Methodology used to generate that word count:
[

$ texcount -inc -alphabets=Latin -unicode -sum -1 report.tex

]

Declaration

I, Shuntian Liu of Magdalene College, being a candidate for the Computer Science Tripos, Part
III, hereby declare that this report and the work described in it are my own work, unaided except as
may be specified below, and that the report does not contain material that has already been used to any
substantial extent for a comparable purpose.

Signed: Shuntian Liu

Date: 01/06/2023

This dissertation is copyright ©2023 Shuntian Liu.
All trademarks used in this dissertation are hereby acknowledged.

ii

Abstract

Mnesia is a soft real-time embedded Database Management System written for Erlang, a programming
language that powers the infrastructures of various organisations like Cisco, Ericsson and the NHS.
Due to Mnesia’s tight integration with Erlang, it is also impactful in open source projects such as
RabbitMQ and ejabberd.

However, the development of Mnesia has remained stagnant for years, resulting in the lack of
features such as automatic conflict resolution: Mnesia leaves the handling of conflicts after network
partitions entirely to the developer. Moreover, as a distributed database, Mnesia only provides two
extreme forms of consistency guarantee: transactions and weak consistency. Existing solutions to this
problem are either external libraries or commercial standalone products, none of which is integrated
into Mnesia natively. This means Erlang developers often have to introduce new dependencies into
their codebase or resort to less ideal alternative databases.

To address this issue, we propose a new consistency guarantee for Mnesia: eventual consistency
(EC). The benefit of this is twofold: first, EC introduces an intermediate consistency guarantee
between transactions and weak consistency, offering more choices to developers; second, this imple-
mentation of EC with Conflict-free Replicated Data Types (CRDTs) enables automatic conflict resol-
ution after a network partition.

We have implemented EC as an extension to Mnesia named Hypermnesia and evaluated its correct-
ness, efficiency and usability. Evaluation results show that Hypermnesia’s EC operations can produce
consistent results in the presence of partitions and perform more than 10 times faster than Mnesia’s
default transactions. Moreover, Hypermnesia’s API enables minimum code refactoring for adoption
in real-world systems. We hope Hypermnesia can be integrated into Mnesia and used by Erlang de-
velopers in the future.

iii

Acknowledgements

I am grateful to:

• Evangelia Kalyvianaki and Andreas Grammenos for their patient guidance and encourage-
ment throughout this project.

• Natalia Chechina for her expert knowledge in Erlang and Mnesia ecosystem, and the rest of
the Erlang Solutions* for their professional industrial insights.

• John Fawcett for his support during my Part III study and beyond.

• Martin Kleppmann for his advice on CRDTs.

• Han for his feedback on this report.

*https://www.erlang-solutions.com

iv

https://www.erlang-solutions.com

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges . 2
1.3 Contributions . 3
1.4 Outline . 3

2 Background 4
2.1 Consistency models . 4
2.2 Mnesia . 5

2.2.1 Design goals . 5
2.2.2 Architecture . 5
2.2.3 Data representation . 6
2.2.4 Access contexts . 6
2.2.5 Consistency and availability . 8

2.3 CRDTs . 9
2.3.1 State-based CRDTs . 9
2.3.2 Operation-based CRDTs . 9

2.4 Summary . 11

3 Related work 12
3.1 Databases and eventual consistency . 12

3.1.1 Mnesia and eventual consistency . 12
3.1.2 Key-value stores . 12
3.1.3 Multi-version concurrency control . 13
3.1.4 Augmenting existing embedded databases 13

3.2 CRDTs research . 13
3.2.1 Systems using CRDTs . 13
3.2.2 Time and space improvements . 14

4 Design and implementation 15
4.1 Design . 15

4.1.1 API design . 15
4.1.2 Choosing a CRDT . 16

4.2 Implementation overview . 17
4.3 Causal Broadcast . 18

v

CONTENTS

4.3.1 Causal broadcast server . 18
4.3.2 Tagged causal stable broadcast . 19

4.4 Pure operation-based Set CRDT . 20
4.4.1 Causal Redundancy . 20
4.4.2 Causal stability . 20
4.4.3 Broadcast and CRDT algorithms . 21
4.4.4 Practical concerns . 21

4.5 Fault tolerance . 24
4.5.1 Communication failure . 24
4.5.2 Transient failure . 26

4.6 Summary . 27

5 Evaluation 28
5.1 Setup . 28
5.2 Correctness . 28
5.3 Benchmarking . 29

5.3.1 Benchmark overview . 29
5.3.2 Number of generators . 30
5.3.3 Cluster size . 30
5.3.4 Workload types . 32
5.3.5 Table size . 32

5.4 Space overhead . 33
5.5 Fault tolerance . 34
5.6 APIs and refactoring . 35
5.7 Summary . 37

6 Conclusions 38
6.1 Accomplishments . 38
6.2 Future work . 38

Bibliography 40

Appendices 44

A Benchmark configuration file A1

B Repository and demo B1

C State-based CRDTs details C1
C.1 Properties . C1
C.2 Delta-state CRDTs . C2

vi

CONTENTS

C.3 Example: Delta-State set CRDT . C3

D Remove-wins set algorithm D1

E Evaluation set-up E1
E.1 Single machine specification . E1
E.2 Cluster configuration . E1

F Hypermnesia test suite output F1

vii

List of Figures

2.1 Mnesia cluster architecture and code structure. 6
2.2 Example Mnesia table and its definition for students. 7

4.1 Hypermnesia architecture overview. 18
4.2 Illustration of a communication failure in Mnesia. 25
4.3 Hypermnesia buffers messages during communication failure and resolves conflicts

afterwards. 25
4.4 Mnesia and Hypermnesia’s response to transient network failure. 26

5.1 Throughput and latency against the number of generators. More generators generally
bring higher throughput and latency. 30

5.2 Throughput and latency against the number of nodes with fixed or varying number
of generators. Adding replicas increases the overhead, but can be reduced by adding
generators and increasing parallelism. 31

5.3 Throughput and latency against different workload types. Read-heavy workloads are
faster than write-heavy ones in all three cases. 32

5.4 Throughput and latency against table size. Dirty operations are affected the most. . 33
5.5 Space overhead. The number of subscribers represents the size of the table. 34
5.6 Throughput changes against time. Network partition affects the transaction through-

put but not dirty and EC throughputs. 35

B.1 Demo . B1

viii

List of Listings

2.1 Mnesia table manipulation API. 7
2.2 Comparing transaction and asynchronous dirty operations API. 7
2.3 A pure op-based AW-set implementation, adapted from [5]. 10

4.1 New eventual consistency (EC) API based on existing Mnesia APIs, using the same
example as Listing 2.2. 16

4.2 New eventual consistency (EC) API based on existing Mnesia APIs. 16
4.3 mnesia_causal server for causal broadcast. 19
4.4 mnesia_causal server interface for Tagged Causal Stable Broadcast. 19
4.5 The redundancy relation R for an AW-set. o[0] is the operation, while o[1] is the key.

Taken from [5]. 20

5.1 Changing from transaction or dirty operations to EC operations. 36
5.2 Adding a type declaration when creating a Mnesia table. Code excerpt modified from

ejabberd [44]. 36

A.1 Example benchmark configuration file. A1

C.1 The join semilattice for δ-CRDTs, adapted from [1]. C3
C.2 δ-CRDT set specification, adapted from [1]. C4

ix

Chapter 1

Introduction

This project report presents Hypermnesia, an extension to the Mnesia Database Management System
(DBMS) [18]. Hypermnesia provides eventual consistency (EC) guarantee on top of Mnesia’s transac-
tional semantics. In this chapter, I first discuss the motivation for building Hypermnesia (§1.1), then
list the challenges and contributions in building Hypermnesia (§§1.2 and 1.3). After that, an outline of
the report structure is given (§1.4).

1.1 Motivation

Mnesia is an embedded distributed Database Management System (DBMS) designed for industrial-
grade communication systems written in Erlang [18]. It is influential in its usage across companies
and organisations like Cisco, Goldman Sachs and Mastercard [11]. It is also used in open source highly
scalable message brokers and XMPP services, such as RabbitMQ [56], MongooseIM [23] and ejab-
berd [44]. Furthermore, Mnesia is part of the Linux, Yaws, Mnesia, Erlang (LYME) software bundle
for building dynamic web pages that can handle heavy traffic [62].

Despite its usage in heavy-load applications such as WhatsApp [58] that handle tens of thousands of
messages per second [35], the development of Mnesia has stayed relatively stagnant for many years*. Due
to Mnesia’s highly specialised nature and complex codebase, extending it often requires a combination
of research knowledge and language expertise. This has deterred many developers from contributing
to Mnesia, which means Mnesia lacks features that many modern distributed databases have. Examples
include the lack of non-transactional guarantees and automatic recovery after network partitions.

Mnesia provides two ways to access the database: transactions and dirty operations. Transactions
provide ACID guarantees [27], while dirty operations only give weak consistency [57]. Developers
have to choose either the strong transactional API while sacrificing performance and availability during
network partitions, or use dirty operations for fast performance, but risk their data being inconsistent.
Moreover, Mnesia leaves the handling of potential data inconsistency after a partition entirely up to
the developer [18], which means a manual restart of the cluster is often needed. Indeed, developers
have reported that “the experience has convinced us that we need to prioritize up our network partition
recovery strategy” [41] while handling a partitioned Mnesia cluster.

There are plenty of consistency models that are weaker than transactions but stronger than dirty

*Much of the core code modified in this project are over 13 years old, dating back to the time when Erlang was published
on Github.

1

1.2. CHALLENGES

operations’ weak consistency [19]. One such model is eventual consistency [57], which guarantees
convergence eventually when no updates are made to the data. This is an attractive model for Mnesia
since it often has better performance than transactions, while also maintaining consistency eventually.
Modelling data this way can serve as a viable approach for achieving data consistency after a network
partition.

To this end, I propose the following research questions (RQs):

RQ1. Can we introduce a non-transactional consistency guarantee, for example, eventual consistency,
into Mnesia? Mnesia was developed and designed before many of these consistency models
became popular [38], and therefore retrofitting them into Mnesia can be a non-trivial task.

RQ2. How much overhead, in terms of time and space, will this new guarantee bring, compared to Mne-
sia’s existing operations? Mnesia’s tight integration with Erlang gives it outstanding performance
compared to other standalone databases. Therefore, it is important to evaluate the overhead of
the new operations to ensure they are still competitive.

RQ3. Can eventual consistency help us achieve automatic conflict resolution after a partition in Mne-
sia? The fault tolerance model of Mnesia (§4.5) may present extra challenges in this otherwise
straightforward extension.

RQ4. How much code refactoring is needed for the consistency guarantee to function? Mnesia is used in
many large-scale (legacy) codebases, which might be too expensive to do refactoring. Therefore
it is important to understand the cost of adopting a new consistency model API in Mnesia.

1.2 Challenges

There are several technical challenges (TCs) that need to be overcome to design, implement and evaluate
Hypermnesia:

TC1. Mnesia is a rather old database system that has not received much attention for years. This means
the codebase contains legacy code and is not well documented.

TC2. The previous point implies that there are potentially legacy projects using Mnesia. The new fea-
ture, therefore, needs to be backwards compatible and ideally easy to be adopted by developers.

TC3. Another consequence of Item TC1 is that its test suite does not include network partition tests,
which are essential in testing the correctness of eventual consistency. Moreover, its benchmark
suite is only written for transactions. Both of these need to be extended to evaluate Hypermnesia.

TC4. There are multiple ways to achieve eventual consistency. Therefore an informed choice needs
to be made based on Mnesia’s existing architecture. A survey of existing methods and a study
of the relatively undocumented architecture of Mnesia is essential.

2

CHAPTER 1. INTRODUCTION

1.3 Contributions

• A new eventual consistency model for the Mnesia DBMS. A new set of APIs is designed for
this new model to minimise the amount of code refactoring for existing codebases. Moreover,
with this new API, automatic conflict resolution is possible after a network partition, relieving
developers from the burden of manually restarting the database.

• An extension of the test suite for network partitions. These are used to test the correctness
of Hypermnesia. It might be useful for testing existing functionalities such as transactions as
well.

• An extension of the existing benchmarking library for dirty operations and EC opera-
tions. These are built on top of the original benchmarks for transactions.

• An evaluation of the new eventual consistency API, in terms of the following: (a) fault
tolerance by testing its correctness under network partitions and ability to reconcile after a
partition; (b) performance by analysing time and space overhead and comparing against exist-
ing operations. Results show that Hypermnesia’s EC operations can often achieve 10x higher
throughput and lower latency than Mnesia’s transactions; (c) usability by analysing the amount
of code refactoring needed to adopt the new API in real codebases.

1.4 Outline

The rest of the report is organised as follows: Chapter 2 introduces the reader to the background
knowledge, including the architecture of Mnesia and different ways of achieving eventual consistency.
Chapter 3 describes recent research on eventually consistent databases and CRDTs: a data structure
for implementing eventually consistent systems. Chapter 4 goes into detail about designing an API
for Hypermnesia and implementing it with practical optimisations. Chapter 5 evaluates Hypermnesia
in terms of its correctness, performance and usability. Chapter 6 concludes the report and outlines
potential future work.

3

Chapter 2

Background

This chapter introduces consistency models in a distributed system relevant to this work (§2.1). It then
discusses the architecture of Mnesia (§2.2) before giving an overview of CRDTs.

2.1 Consistency models

A distributed system often involves a set of replicated state machines [34]. Coordinating these clusters
of machines is a challenging task, and tradeoffs can be made between consistency and performance.
Many consistency models are formalised for both transactional and non-transactional systems [55].
This section gives a brief introduction to three of them in detail: distributed transactions (provided
by Mnesia’s transaction API), weak consistency (provided by Mnesia’s dirty operations) and eventual
consistency (the aim of this project).

Distributed transactions is sometimes also called distributed atomic commits. It is achieved if
all nodes commit or all nodes abort [48]. This is part of the properties provided by ACID [27] and
is often implemented with the distributed two-phase commit protocol [9]. Mnesia provides such a
guarantee via its transaction APIs.

Weak consistency is defined as follows: “The system does not guarantee that subsequent accesses
will return the updated value, and several conditions need to be met before the value will be returned” [8,
55, 57]. It is (deliberately) vaguely defined to incorporate systems whose replicas “might become con-
sistent by chance” [8]. Mnesia’s dirty operations fall into this category.

Eventual consistency is defined as follows: “If no new updates are made to the object, eventually
all accesses will return the last updated value” [57]. There are often two steps in achieving eventual con-
sistency [63]: (i) anti-entropy [13] disseminates data to all the nodes in a cluster; (ii) conflict resolution
addresses potential conflicts when handling received data.

Anti-entropy typically involves some form of broadcasting messages, while conflict resolution tends
to use (one of) the following three techniques: [30]: Conflict-free Replicated Data Types (CRDTs) [42,
50] Mergable persistent data structures [24] and Operational transformation [14].

Among these three ideas, CRDTs is one of the database community’s most used and well studied
approaches. It has been successfully deployed in many NoSQL databases, such as Riak [33], Redis [47]
and Microsoft Azure Cosmos DB [52]. Operational transformation requires a central coordinator,

4

CHAPTER 2. BACKGROUND

which is unsuitable for Mnesia as it uses a leaderless replication strategy (§2.2.2). Mergable persistent
data structures are based on version control ideas, but multi-version support is not available in Mnesia,
meaning this method is not easily implementable in Mnesia. In conclusion, CRDTs is chosen as the
basis of conflict resolution and discussed in more detail in §2.3.

2.2 Mnesia

Mnesia is an embedded [45], specialised distributed DBMS for Erlang/OTP applications (§§ 2.2.1
and 2.2.2). It is similar to relational databases where each table stores tuples (§ 2.2.3), but also dif-
ferent since it uses Erlang as its query language instead of SQL. It has dual mode support for accessing
data (§2.2.4), discussed in more detail below.

2.2.1 Design goals

The original design of Mnesia attempts to meet several requirements [18]:

1. Fast real-time key-value lookup

2. Complex non-real-time queries (mainly for operation and maintenance tasks)

3. Distributed data (due to the distributed nature of the applications)

4. High fault tolerance

5. Dynamic reconfiguration

Based on these, Mnesia was built as part of the Erlang/OTP distribution. Erlang was originally
designed for building fault-tolerant telecommunication systems, and Mnesia helps it to better achieve
that goal by acting as an embedded database: it is tightly coupled to Erlang, giving it two distinct
features: (a) The database runs in the same address space as the application itself, offering minimum
overhead while accessing data. (b) The database uses native Erlang records to store its data, removing
the impedance mismatch between different data formats.

These special features make Mnesia only suitable for specific purposes. Mnesia is typically used
when there is a need to replicate a relatively small amount of data: compared with standard SQL
databases that can handle terabytes of data, Mnesia is instead built for (tens of) gigabytes of data [28].
For example, user login details are often stored as session data, and to scale the application out, these
data need to be replicated across nodes and accessed quickly to provide a good user experience. Mnesia
can be a suitable candidate in such a case due to its compelling performance.

2.2.2 Architecture

Mnesia is built on top of Erlang’s built-in memory and disk term storage ets and dets [22]. These
term storage can be thought of as primitive storage engines that provide constant (or logarithmic)

5

2.2. MNESIA

access time for large amounts of data [28]. They support different data structures for storing data, such
as set, bag, etc. Internally, these are implemented as hash tables or balanced binary trees. Mnesia also
provides additional functionalities such as transactions and distribution on top of ets and dets.

A Mnesia cluster generally has a leaderless architecture where every replica can handle client requests.
A cluster of Mnesia nodes are connected via the Erlang distribution protocol, which uses TCP/IP
as its carrier by default, providing reliable in-order delivery. Moreover, the connection is transitive,
like Figure 2.1a which forms a cluster of fully connected nodes (or a mesh).

N1

N2 N3

N4 N5

(a) Example Mnesia cluster of five
nodes. Note they always form a fully
connected network.

mnesia sup

event

kernel sup

causal

ec
pawset

prwset
others. . .

monitor

subscriber

locker

tm

controller

ext sup

(b) Relationships between various Mnesia processes, in the form of a supervision
tree. Most of the logic for replication is inside mnesia_tm (highlighted in blue).
Modules added by Hypermnesia are highlighted in green. More details on the new
modules are discussed in §4.2. Diagram partly based on [39].

Figure 2.1: Mnesia cluster architecture and code structure.

Figure 2.1b shows a brief overview of the modules in Mnesia according to the supervision relation.
Erlang’s fault tolerance model has the concept of a supervision tree [20], a hierarchy of processes in
charge of monitoring/supervising child processes for killing and restarting “misbehaving” processes.

2.2.3 Data representation

Mnesia stores data in Erlang records [22]. Figure 2.2a is an example of a student record, and this is how
each row of a Mnesia table is represented, with Figure 2.2b as the corresponding definition in Erlang.

2.2.4 Access contexts

A central API provided by Mnesia for table manipulation is given in Listing 2.1. A user calls the
activity function which takes in:

1. A Kind of activity, also called a access context. Currently supported contexts include transactions
and dirty operations;

6

CHAPTER 2. BACKGROUND

student id (key) name college age

bb123 Bruce Banner Avengers 54
ts233 Tony Stark Avengers 50
sg333 Steve Rogers Avengers 100

(a) An example Mnesia table for student information.

-record(student,
{id :: integer(),
name:: string(),
college :: string(),
age:: integer()}).

(b) Erlang record definition for a student.

Figure 2.2: Example Mnesia table and its definition for students.

2. A function (Fun);

3. Arguments to be passed to the function (Args);

4. The module in which the function is defined (Mod).

There are two almost equivalent* ways of using this API, and Listing 2.2 provides an example
of writing a tuple {k,v} into the table tab_name and then reading it out. I use the convention of
function_name/arity to represent Erlang functions in these code examples and the rest of this
report.

mnesia:activity(Kind, Fun, Args :: [Arg :: term()], Mod) -> t_result(Res) | Res
where Kind = activity()
Fun = fun((...) -> Res)
Mod = atom()

Listing 2.1: Mnesia table manipulation API.

mnesia:activity(transaction, fun () ->
mnesia:write({tab_name, k, v}),
mnesia:read({tab_name, k})

end).

(a) transaction with activity/2

mnesia:activity(async_dirty, fun () ->
mnesia:write({tab_name, k, v}),
mnesia:read({tab_name, k})

end).

(b) asynchronous dirty with activity/2

mnesia:transaction(fun () ->
mnesia:write({tab_name, k, v}),
mnesia:read({tab_name, k})

end).

(c) transaction with transaction/1

mnesia:async_dirty(fun () ->
mnesia:write({tab_name, k, v}),
mnesia:read({tab_name, k})

end).

(d) asynchronous dirty with async_dirty/1

Listing 2.2: Comparing transaction and asynchronous dirty operations API.

*Subtle differences between these two APIs can be found in the reference guide [19]

7

2.2. MNESIA

Transactions in Mnesia provide ACID properties [18]. While this is attractive, it also incurs large
performance overhead and hence a full-fledged transaction might not be suitable for all tasks. For
example, in a datagram routing application, it can be too slow to initiate a transaction each time a packet
is received [18]. The underlying implementation of Mnesia uses two-phase commit for distributed
transactional atomicity, write-ahead logging for durability and consistency, and two-phase locking for
isolation.

Dirty operations in Mnesia bypass most transactional processing and operate directly on the data.
Therefore they are much faster (at least 10x [19]) than transactions. As a consequence, they lose the
ACID properties. However, dirty operations still provide some level of consistency such as no garbled
records for individual dirty reads. The underlying implementation of dirty operations follows this
pattern: when the function is called, the operation is first performed on the local table. Then relevant
information is collected including the Erlang record, the target table, and so on. These are then sent
to other replicas in the cluster. Mnesia does not examine the content in the table during this process.
This property is useful in helping us choose a CRDT, as we will see later that some CRDTs require ex-
aminations of the state before broadcasting the message (§4.1.2). On the receiving side, the transaction
manager monitors and applies the received message accordingly.

2.2.5 Consistency and availability

The CAP theorem [25] forces a system to choose between consistency and availability during a network
partition. Mnesia responds to this problem by taking no stance with respect to the CAP theorem [2],
but leaves the handling of the recovery process entirely to the developer [18], often resulting in a manual
restart of the Mnesia nodes after partitions. Recent improvements have incorporated the feature to al-
low developers to set the majority option which disallows any non-dirty operation to a table not in a
majority quorum. This option is useful for preventing conflicts for critical data, but sacrifices the avail-
ability of the database further and only works for transactions. There is also a set_master_nodes/2
function which unconditionally loads data from the master node after a partition. It can be useful in
some cases, but is a rather “brutal” way of handling partitions since it might lead to data loss.

Erlang’s built-in distribution protocol has a failure detector that periodically sends heartbeats. If a
node does not receive a heartbeat from another node for some time, then the failure detector considers
that node dead and disconnects itself. Mnesia relies on Erlang’s failure detector to function, and two
possible situations can occur during a network partition (NP):

NP1. The partition is a transient failure in which the failure detector does not consider a temporarily
unresponsive node dead. In this case, operations can carry on as usual, but transactions will
stall since the two-phase commit protocol requires responses from all participating nodes. Dirty
operations can be performed as usual. When the partition heals, buffered messages will then be
delivered. But dirty operations risk the database being in an inconsistent state when the network
heals, as we shall see in §4.5.1.

8

CHAPTER 2. BACKGROUND

NP2. The partition lasts long enough that the failure detector detects the communication failure and
disconnects the nodes it thinks have failed. In this case, Mnesia would reconfigure itself and
perform future operations without the failed nodes, i.e. Mnesia considers itself as having a new
cluster with only the members still alive. When the partition heals, Mnesia logs an error message
saying that the database might be inconsistent and ask the developer to fix this issue manually.

2.3 CRDTs

Conflict-free Replicated Data Types (CRDTs) [42, 50] are a family of replicated data types with a
common set of properties that enable operations to be performed locally on each node while always
converging to a final state among replicas if they receive the same set of updates. There are two types
of CRDTs: state based (§2.3.1) and operation based (§2.3.2). Each of them is discussed in detail with
examples below.

2.3.1 State-based CRDTs

Here I provide a summary of the properties of state-based CRDTs. Refer to Appendix C and [1, 42,
50, 54] for mathematical details and examples.

A state-based CRDT communicates by propagating its state of the data structure with other parties,
and performs the merge operation with a merge (sometimes called join) operator to converge towards
the Least Upper Bound (LUB) of two states. The merge operator must be commutative, idempotent
and associative to guarantee the convergence property (Proposition 2.3.1), which is key to eventual
consistency.

Proposition 2.3.1 ([50]). Any two object replicas of a state-based CRDT eventually converge, assuming
the system transmits payload infinitely often between pairs of replicas over eventually-reliable point-to-
point channels.

Propagating the entire states of a (big) data structure can often be expensive. Therefore Delta-State
Conflict-Free Replicated Data Types (δ-CRDTs) [1] is proposed. It disseminates only the changing
parts of the state as a δ-state, reducing communication costs. Due to their simple requirements on the
channel, δ-CRDTs often have complex logic in managing and disseminating states.

2.3.2 Operation-based CRDTs

Operation-based (op-based) CRDTs send the operation performed on the CRDT object (as opposed to
the state) along with some metadata. An op-based CRDT typically requires two concurrent operations
f and g to be commutative under the causal delivery order <d: f ∥d g ⇐⇒ f ̸<d g ∧ g ̸<d f .

For this reason, a causal delivery channel is often required for op-based CRDTs to work. Given
such a channel, the following property (Proposition 2.3.2) holds:

9

2.3. CRDTS

Proposition 2.3.2 ([50]). Any two replicas of an op-based CRDT eventually converge under reliable
broadcast channels that deliver operations in delivery order <d.

One advantage of op-based CRDTs is their communication efficiency. Using a set as an example data
structure, instead of sending the entire set with all its elements, op-based set can just send operations
like add or delete. This could significantly reduce the communication cost, especially when the set
is large.

Given the stronger assumption on the channel, designers of op-based CRDTs only need to choose
how they want to order concurrent operations, an example of a particular type (which is also the one
implemented in Hypermnesia) of op-based CRDTs is given below.

Pure op-based CRDTs

The definition of the original op-based CRDTs makes the separation between state-based and op-based
CRDTs less clear in that an op-based CRDTs can often include state information while sending oper-
ations. For example, before sending operation add(1) on a set, the state of the set can be inspected
and the entire set can be added as the “operation”. It also has a relatively high implementation com-
plexity [6]. To address this, pure op-based CRDTs were developed [4, 5], which forbids inspecting the
state σ while generating the message m.

I now illustrate pure op-based CRDTs with an example add-wins set (AW-set). Listing 2.3 is the
conceptual view of implementing it. Typically there are three operations on an op-based CRDT: a
generator prepare, which turns the operation oi on the current state σi into a message mi that is
sent via reliable causal broadcast; an effector effect, which receives the message m and applies it
onto the current state σj and produces a new state σ′

j ; and eval, which takes an operation, such as
lookup an element in a set and the current state σi, and returns the result of the operation. For pure
op-based CRDTs, data and timestamps need to be stored in a Partially Ordered Log (PO-Log) [4, 5],
partially ordered by the timestamp attached to each operation. This aims to identify causal relationships
between different elements, which is important for the convergence property (Proposition 2.3.2).

Σ : T ↪→ O

preparei(o, s) = o

effecti(o, t, s) = s ∪ {(t, o)}
evali(elems, s) = {v | (t, [add, v] ∈ s∧ ̸ ∃(t′, [rmv, v] ∈ s · t < t′))}

Listing 2.3: A pure op-based AW-set implementation, adapted from [5].

The PO-Log (Σ) for the AW-set is a partial function from timestamps to operations (with appro-
priate payload). Note that the effector takes three arguments, the operation o, timestamp t and state
s, and it simply unions the operation and timestamp with the current state (i.e. appending it to the
log), leaving the complexity to the lookup function. This is a fairly space-expensive operation, since all
operations need to be stored in the log including deletions. Optimisations are discussed later in §4.4.

10

CHAPTER 2. BACKGROUND

2.4 Summary

In this chapter, we discussed transactions, weak and eventual consistency (§2.1), the first two are offered
by Mnesia (§2.2), and this project aims to provide the last. A family of data structures, (CRDTs) are
also described (§2.3) to show how they help achieve eventual consistency.

11

Chapter 3

Related work

The field of database research is a dynamic and broad domain that encompasses a variety of topics.
This chapter focuses on the architecture and design of eventually consistent databases (§3.1). Simil-
arly, for CRDTs (§3.2), this chapter surveys them in the context of how they impact the design and
implementation of Hypermnesia.

3.1 Databases and eventual consistency

3.1.1 Mnesia and eventual consistency

Mnesia’s lack of automatic conflict resolution has been problematic for developers using it [41, 61].
Unsplit [60], an external library for Mnesia, allows for user-defined merge logic but requires developers
to define the custom logic. ForgETS [58] is WhatsApp’s Mnesia “drop-in” replacement database, aim-
ing to provide Mnesia’s missing features such as auto reconciliation and auto reconnection. ForgETS
uses the last-write-wins strategy for conflict resolution. However, ForgETS is a proprietary database
influenced by WhatsApp’s operational experience, and the details of its effectiveness are unknown.
Moreover, ForgETS is a standalone database built on top of ets, while Hypermnesia aims to extend
Mnesia to support automatic resolution natively.

3.1.2 Key-value stores

Key-value stores like Redis* serve as a caching layer between servers and databases, offering an Active-
Active architecture that allows replicated database instances to distribute over different (possibly dis-
tant) locations. Redis is an advanced system with many more features such as expiring keys, and uses
op-based CRDTs for conflict resolution between different instances [47]. While Mnesia has a similar
use case, it is primitive and embedded into the Erlang ecosystem. Mnesia can provide a faster response
time than Redis when used on a smaller scale, thanks to its shared address space with the application.
This research aims to enhance Mnesia with stronger non-transactional consistency models found in a
general purpose in-memory database (like Redis), reducing the constraints when developers opt for
Mnesia as the choice of their Erlang applications.

*https://redis.com

12

https://redis.com

CHAPTER 3. RELATED WORK

3.1.3 Multi-version concurrency control

SwiftCloud [43] is a fault-tolerant geo-replicated transactional system. It provides causally consistent
snapshots for each transaction with object versioning. As a geo-replicated system, SwiftCloud allows
local operations to be performed on the client without going through the server but only when they
operate on mergeable data types (e.g. CRDTs) during a transaction. Antidote database [51] goes one
step further, integrating TCC with stronger consistency models and allowing developers to choose
between them.

Multi-version Concurrency Control (MVCC) is a popular technique used in conjunction with
CRDTs to provide eventual or sometimes even transactional consistency. Mnesia does not support
object versioning by default, so adding MVCC requires extensive work. In this project, we focus on
adding eventual consistency and leave the integration of MVCC and CRDTs as future work (§6.2).

3.1.4 Augmenting existing embedded databases

SQLite† is one of the most widely used embedded SQL database engines in the world [29]. It does not
have built-in support for replication, but there has been work that extend it for local-first software [53]
with Conflict-free replicated relations (CRRs): CRDTs applied to relational databases [65]. They use
a two-layer architecture: an application layer for handling client requests, and a CRR layer for conflict
resolution and anti-entropy protocols. However, their work still remains in progress and it is not clear
how effective their approach is in terms of overheads. ElectricSQL‡ is another attempt to augment
SQLite with local-first behaviours. It uses RichCRDT [3], which are CRDTs extended with database
guarantees, based on ideas from Antidote.

These techniques for enhancing SQLite are similar in spirit to Hypermnesia. However, SQLite is
a rather general purpose single-node database receiving constant developments. In contrast, Mnesia
is integrated with the Erlang ecosystem and designed as a distributed database, hence they have differ-
ent use cases. Moreover, to the best of our knowledge, there is no performance evaluation on these
extensions to SQLite yet.

3.2 CRDTs research

3.2.1 Systems using CRDTs

CRDTs are often used in collaboration software such as shared text editors [59] to provide local-first
behaviours [32], i.e. users of the editors can keep typing into the document despite unstable networks.
It has then found its use in areas such as synchronisation on the edge and opportunistic networks [26,
64]. These systems typically have constrained network or computing resources and CRDTs can be
used to delay synchronisation and respond to the user first.

†https://sqlite.org/index.html
‡https://electric-sql.com

13

https://sqlite.org/index.html
https://electric-sql.com

3.2. CRDTS RESEARCH

Researchers have been investigating new areas where CRDT techniques can be applied. Hyperm-
nesia does not aim to apply CRDTs in a novel way but rather to experiment with their suitability in
an embedded database like Mnesia.

3.2.2 Time and space improvements

CRDTs are constantly invented and improved to reduce their resource consumption. For example,
the proposal of δ-CRDTs [1] is partly due to the communication overhead of propagating the entire
state in normal state-based CRDTs. Pure op-based CRDTs [4] were also proposed to reduce the space
overhead. Bauwens and Boix [6] further improve the reactivity and storage requirements of pure
op-based CRDTs by exposing more information from the causal broadcast layer. van der Linde et al.
[54] suggest a new way to adapt δ-CRDTs for more unstable networks. Furthermore, Bauwens and
Gonzalez Boix [7] show a more eager way to remove metadata using acknowledgements from replicas.

One research question of this project is to understand the overhead of eventual consistency in Mne-
sia. The space and time optimisations proposed are useful for improving Hypermnesia’s efficiency,
therefore they are investigated in detail, and some of their ideas are used in Hypermnesia’s implement-
ation (§4.4).

14

Chapter 4

Design and implementation

This chapter provides an account of Hypermnesia’s design and implementation. Hypermnesia’s API
and the selection of a CRDT are discussed in § 4.1, with alternative options also considered. Sub-
sequently, the implementation is outlined in §4.2 at a high level before diving into three key compon-
ents: causal broadcast, Set CRDT and fault tolerance from §§4.3 to 4.5.

4.1 Design

4.1.1 API design

Hypermnesia’s API is designed with the research question Item RQ4 on refactoring in mind. We
consider the SOLID principle [37] with the following design goals (DGs):

DG1. Backwards compatibility and code refactoring. Hypermnesia should be backwards com-
patible with the existing codebase and should run normally without modification if developers
choose not to use the new feature. Moreover, if they opt for the new feature, the API should
minimise the amount of refactoring needed for an existing codebase.

DG2. Single responsibility. The new feature should be contained in module(s) isolated from existing
Mnesia code, while respecting Mnesia’s code structure. This makes the implementation self-
contained and easier to maintain.

DG3. Extensibility. Hypermnesia should be extensible to new implementations. This is beneficial
since there are various possible CRDTs, e.g. operation-based and state-based. They often achieve
similar goals but rely on different assumptions. Hypermnesia should be extensible to new CRDT
variants for different tradeoffs.

Based on the existing APIs provided by Mnesia (§2.2.4), one way to extend it with new APIs for
eventual consistency would be to add a new access context called async_ec so that database operations
performed within this context are eventually consistent. Using the same example, we can change List-
ing 2.2 (the original API for transactions and dirty operations) to Listing 4.1 (the new EC API). We
argue that this is a fairly natural extension to the existing Mnesia access contexts, and requires little re-
factoring of existing code (dirty or transaction changed to ec). It does not break existing features
either if no changes are made to the existing code, thus fulfilling Item DG1.

15

4.1. DESIGN

mnesia:activity(async_ec, fun () ->
mnesia:write({tab_name, k, v}),
mnesia:read({tab_name, k})

end).

(a) activity/2 with new access context async_ec

mnesia:async_ec(fun () ->
mnesia:write({tab_name, k, v}),
mnesia:read({tab_name, k})

end).

(b) async_ec with new function async_ec/1

Listing 4.1: New eventual consistency (EC) API based on existing Mnesia APIs, using the same example
as Listing 2.2.

We also wish to allow programmers to declare which type of CRDTs they want to use. This can
be done while declaring the table type as pawset at creation time. Mnesia asks users to enter the
type of each table at creation time (Listing 4.2a). The default values are set, bag, etc. This can be
extended to support pure AW-set (pawset) and RW-set (prwset) as well (Listing 4.2b). Note that
having multiple Set CRDT implementations allow developers to choose the most appropriate one for
their applications, demonstrating the extensibility of Hypermnesia (Item DG3).

mnesia:create_table(project,
[{type, set},
{ram_copies,

all_nodes()},↪→

{attributes,
record_info(fields, student)}]).↪→

(a) Creating a table of default type set and storing stu-
dent record data Figure 2.2b.

mnesia:create_table(project,
[{type, pawset},
{ram_copies,

all_nodes()},↪→

{attributes,
record_info(fields, student)}]);↪→

(b) Creating a table of type pawset (pure add-wins
set) and storing student record data. A prwset (pure
remove-wins set) can be used as well.

Listing 4.2: New eventual consistency (EC) API based on existing Mnesia APIs.

Finally, different CRDT logic is implemented inside separate modules, aiming to achieve the single
responsibility requirement (Item DG2). The new mnesia_ecmodule is built for handling data replic-
ation and interfacing with the underlying CRDTs, mnesia_causal module for causal delivery, and
mnesia_pawset/mnesia_prwset module(s) for data storage and conflict resolution (Figure 2.1b).

4.1.2 Choosing a CRDT

We talked about different kinds of CRDTs in §2.3. One type of Set CRDT needs to be chosen for
Hypermnesia’s implementation. We consider two main factors (Fac):

Fac1. How efficient is this CRDT in terms of space and time?

Fac2. How easy does it fit into the existing Mnesia codebase and how many breaking changes need to
be made?

On the one hand, state-based CRDTs (§2.3.1) have an important drawback in their communication
overhead [1]. This might not be acceptable for data types with large state such as sets. δ-CRDTs is a

16

CHAPTER 4. DESIGN AND IMPLEMENTATION

more suitable candidate for our purpose but even with δ-CRDTs, a fair amount of data needs to be
broadcast, especially as the number of operations increases (see Appendix C for details). Moreover, it
might be difficult to examine the state before broadcasting, since Mnesia does not do this by default
(§2.2.4). State-based CRDTs do have the advantage of low demand on the channel. Therefore reliable
broadcasting in Mnesia would be sufficient.

On the other hand, operation-based CRDTs tend to require the channel to provide causal broadcast,
which has to be implemented in Mnesia from scratch. Dynamic membership, i.e. nodes leaving and
joining the cluster, is also tricker with operation-based CRDTs as buffering and replaying of operations
are needed. Nevertheless, pure operation-based CRDTs largely resemble Mnesia’s anti-entropy strategy,
with no examination of the current content and immediate synchronisation for each operation [40].
State-based CRDTs are less suitable for these requirements [42]. Therefore pure op-based CRDTs
better meets the second requirement (Item Fac2).

In terms of efficiency, it is challenging to characterise the performance metrics of each CRDT
without practical benchmarking: δ-CRDTs uses periodic synchronisation of delta states, while pure
op-based CRDTs go through an extra causal broadcast layer. Moreover, Almeida et al. [1] and Baquero
et al. [5] proposed optimisations for these CRDTs. One could also argue that these two CRDTs
are fundamentally the same as they are both doing the necessary work for conflict resolution, but at
different layers of the system.

In conclusion, pure op-based CRDTs is chosen for its operational similarity with Mnesia’s dirty op-
erations. We leave experimenting of δ-CRDTs as future work (§6.2). Table 4.1 highlights the differences
between these two CRDTs.

State-based Operation-based

Variant of interest Delta-state Pure op-based

Understandability Complex Medium

Efficiency Good Good

Complexity Periodic anti-entropy different
from Mnesia’s protocol

Causal broadcast not provided
by Mnesia

Advantage Little requirement on the
channel

Similarity to current Mnesia’s
anti-entropy strategy

Table 4.1: Comparison of state and operation based Set CRDTs.

4.2 Implementation overview

Figure 4.1 shows an overview of Hypermnesia’s architecture. A client sends a request to one of the
database nodes connected in the cluster, and this request is then processed by the mnesia_ec module
(§§2.2.2 and 4.1.1), responsible for calling the underlying pure op-based Set CRDT implementation.
In Hypermnesia, two op-based Set CRDTs are implemented: add-wins set (mnesia_pawset) and

17

4.3. CAUSAL BROADCAST

N1

N2 N3

N4 N5

Client 1 request

Mnesia cluster Node 1

Client

Mnesia

write

Network

broadcast

apply

Node 3

Client

Mnesia

read

broadcast

apply

Modules

mnesia_ec
(§§ 2.2.2
and 4.1.1)

mnesia_pawset
mnesia_prwset
(§ 4.4)

mnesia_causal
(§ 4.3)

Figure 4.1: Hypermnesia architecture overview.

remove-wins set (mnesia_prwset) (§4.4), which are called by mnesia_ec based on the appropriate
table type (Listing 4.2). mnesia_ec also calls the mnesia_causal module that handles the causal
broadcast (§4.3). Each of these modules is explained in more detail in the following sections.

4.3 Causal Broadcast

Causal broadcast is a mature algorithm with standard implementation strategies [10, 49]. This section
focuses on various modifications of the causal broadcast algorithm and pure op-based set to the Erlang
ecosystem.

4.3.1 Causal broadcast server

Causal broadcast is often treated as a middleware between the network and the application. It buf-
fers messages until they are causally ready to be delivered to the application. The gen_server beha-
viour is a suitable abstraction, as it provides an interface from which developers can write custom
implementations of request handlers to obtain a generic server (similar to interface in object-oriented
languages) [20].

More concretely, we define a collection of public functions for the causal broadcast server, which
can be called by mnesia_ec while sending and receiving messages. Two most basic ones are send_msg/1
and rcv_msg/1, as shown in Listing 4.3. The send_msg/1 function returns the current timestamp as a
vector clock to be attached to the message. The rcv_msg/1 function takes a received message and returns
a list of messages ready to be delivered to Mnesia for further processing, such as database writing. The
mnesia_causal server also keeps track of a list of buffered messages. Each time a message is received,
it is added to the buffer, and the buffer is searched for deliverable messages.

18

CHAPTER 4. DESIGN AND IMPLEMENTATION

-record(state,
{send_seq :: integer(),
delivered :: vclock(),
buffer :: [msg()] }).

-spec send_msg() -> vclock().
-spec rcv_msg(msg()) -> [msg()].

Listing 4.3: mnesia_causal server for causal broadcast.

4.3.2 Tagged causal stable broadcast

The algorithm discussed above is a standard causal broadcast algorithm [10, 31, 49]. It does not expose
any ordering or timestamp information when delivering a message. A Set CRDT often relies on unique
identifiers to ensure commutativity of causally concurrent operations. Baquero et al. [5] observe that
the timestamp information from the causal broadcast layer can act as a unique identifier for the CRDT,
and thus propose exposing the ordering information from the causal broadcast layer to the application,
i.e. the receive function would return a list of messages along with their timestamps (Listing 4.4).

-spec send_msg() -> timestamp().
-spec rcv_msg(msg()) -> [{msg(), timestamp()}].

Listing 4.4: mnesia_causal server interface for Tagged Causal Stable Broadcast.

The extended Tagged Causal Stable Broadcast (TCSB) protocol works like this: when a message is
ready to be sent, the function send_msg/0 is called to obtain the timestamp which is attached to the
message. And when a message is received, the rcv_msg/1 is called to buffer the message and find all
messages ready to be delivered. A message is ready when the following two conditions hold [10, 31, 49]:

1. The sender entry in the receiver’s delivered map, which keeps track of how many messages are
delivered for each sender, is exactly one less than the entry in the received message’s timestamp;

2. The other entries in the received message’s timestamp are all less than or equal to the correspond-
ing entries in the receiver’s delivered map.

The first condition ensures that all causally preceding messages from the sender have been delivered,
and the second condition prevents us from delivering messages that causally depend on messages from
other nodes. Note that the sender of the message can always deliver messages from itself immediately, a
desirable property for availability during partitions, and causal consistency is the strongest consistency
model that provides such always-available property [36].

19

4.4. PURE OPERATION-BASED SET CRDT

4.4 Pure operation-based Set CRDT

We have discussed the idea of a pure op-based set (§2.3.2). This section builds on top of the basic
ideas of op-based Set CRDT and highlights a few optimisations exploiting the causal broadcast layer
(§§4.4.1 to 4.4.3). More subtle implementation challenges in interactions between Mnesia and the pure
op-based set CRDT are also discussed (§4.4.4).

4.4.1 Causal Redundancy

Causal redundancy is proposed by Baquero et al. [5] for elements in the PO-Log that can be removed
without affecting the output of queries. We define the redundancy relation in Listing 4.5. The first
rule says that a clear or remove operation is redundant in all cases. The second rule makes causally older
additions of the same elements redundant. The third rule says every addition of an element present in
the PO-Log is in the set. Redundant elements can be safely removed from the PO-Log, which helps
reduce the storage cost.

(t, o)R s ⇐⇒ o[0] = clear ∨ rmv

(t, o)R_ (t′, o′) ⇐⇒ t < t′ ∧ (o′[0] = clear ∨ o[1] = o′[1])

evali(elems, s) = {v | (_, [add, v]) ∈ s}

Listing 4.5: The redundancy relation R for an AW-set. o[0] is the operation, while o[1] is the key. Taken
from [5].

4.4.2 Causal stability

The number of timestamps associated with each element grows as elements are added to the set.
Moreover, each of them is proportional to the number of nodes in the cluster. Baquero et al. [4]
suggest removing the timestamps that are causally stable [5, 50]:

Definition 4.4.1 (Causal Stability [4, 5]). A timestamp τ and a corresponding message, is causally
stable at node i when all messages subsequently delivered at i will have timestamp t > τ . Or equival-
ently:

tcstablei(τ) if ∀j ∈ I \ {i}.∃t ∈ delivi() · src(t) = j ∧ τ < t.

Once a timestamp is stable, it can be removed. This is safe since there will be no more concurrent
operations delivered in the future and the timestamp metadata is used to ensure commutativity for
concurrent operations and is therefore no longer needed, reducing the storage cost of the PO-Log.

The actual implementation in Hypermnesia is done by asking the pure AW-set periodically scanning
elements and removing causally stable timestamps.

20

CHAPTER 4. DESIGN AND IMPLEMENTATION

4.4.3 Broadcast and CRDT algorithms

Algorithm 1 shows the broadcast algorithm obtained by putting these optimisations together (§§4.3.2
to 4.4.2). When broadcasting a message (Lines 6 to 10), the appropriate timestamp and sender id are
attached to the message, which is then received and buffered (Lines 11 to 12). The receiver searches for
messages that are causally ready to be delivered using the condition in §4.3.2 (Lines 13 to 20). The causal
broadcast server also provides a function to check for the stability of a timestamp (Lines 22 to 26). This
algorithm combines the standard causal broadcast algorithm [10, 31] and extra exposed APIs proposed
by [4, 5], adapted to fit Mnesia’s architecture (§2.2.2).

Algorithm 2 shows the corresponding algorithm for the pure AW-set, written according to the
specification [4, 5]. The original specifications are written as a mathematical specification, while we
take a programming perspective and present them in terms of set operations like add, delete, etc.
The remove_redundant function is called each time a deletion or insertion happens, and checks
for redundant elements using the redundant function (Lines 23 to 29), based on the idea of causal
stability (Listing 4.5).

Apart from the add-wins set, a remove-wins set (§4.2) is also implemented, and the algorithm is
mostly similar to that of an add-wins set. This can be found in Appendix D.

4.4.4 Practical concerns

This section discusses several practical issues in implementing the algorithm.

Faster access to the PO-Log As discussed in §2.2.2, Mnesia uses ets and dets as its storage system,
which are implemented as hash tables and balanced binary trees. There is no direct support for log-
like structures such as lists. This presents challenges as to how the PO-Log could be implemented.
Typically a Mnesia table is a set indexed by then-th element in a tuple, wheren is customisable. We keep
this structure but use a bag instead of a set to allow multiple elements with the same key but different
(concurrent) timestamps. This representation gives us the advantage of accessing the element by key
inO(1) time, which is useful in speeding up the remove_redundant function that needs a liner scan
of the entire set for matching keys (Line 20 in Algorithm 2). However, this representation also loses
the partial order of the PO-Log, making the stabilisation process (§4.4.2) much more difficult.

Payload conflicts Algorithm 2 deals with operations of a set in terms of addition, deletion, etc.
Although the Mnesia documentation claims the data structure to be a set, it behaves more like a map,
with keys and payload (recall from §2.2.3 we saw that each row in the student table has an id as the
key, and other information like name as the payload). Therefore the Set CRDT falls short when there
are concurrent additions of the same key but different payloads. This can be solved in general with a
Map CRDT [50], which is a straightforward extension of a Set CRDT, but requires the payload to be
CRDTs as well so that the conflict can be resolved recursively for the payload.

This puts constraints on the data a user can put in a Mnesia table, and is considered as breaking too

21

4.4. PURE OPERATION-BASED SET CRDT

Algorithm 1: Tagged Causal Stable Broadcast (TCSB) protocol algorithm, ideas taken
from [5, 6, 31].
1 on init:
2 sendSeq←− 0
3 buffer←− ∅
4 delivered←− {(s, 0) | ∀s ∈ nodes}

/* a map from node to last the timestamp of the last delivered
message */

5 ts_map←− {(s,⊥ | ∀s ∈ nodes)}
6 on broadcast msg at replica i:
7 delivered[i]← sendSeq + 1
8 sendSeq← sendSeq+1
9 deps← delivered

10 broadcast (msg, i, deps) to all nodes
11 on receive (msg,sender,deps) at replica i:
12 buffer← buffer ∪ (msg, sender, deps)
13 repeat

/* find all causally deliverable messages */
14 D ← {(msg, sender, τ) | ∃(msg, sender, τ) ∈ buffer.deps[sender] =

τ [sender] + 1 ∧ ∀s ∈ dom(deps) \ {sender}. deps[s] ≥ τ [s]}
/* update delivered vector and timestamp map */

15 for (msg, sender, τ) ∈ D do
16 delivered[sender]← delivered[sender] + 1
17 ts_map[sender]← τ

18 buffer← buffer \D
19 deliverable← deliverable ∪D

20 until D = ∅
21 deliver deliverable to application
22 on check stability of τ :
23 if τ ≤ min({ts_map[s][src(τ)] | s ∈ dom(ts_map)}) then
24 return true

25 else
26 return false

22

CHAPTER 4. DESIGN AND IMPLEMENTATION

Algorithm 2: Pure AW-set pseudocode, defined in terms of usual set operations. This pseudo-
code sacrifices efficiency for clarity. Ideas are taken from [4, 5, 6].
1 POLog← []
2 function add(e, t):
3 remove_redundant(e, t, add)
4 for (e′, t′, o′) ∈ POLog do
5 if redundant((e, t, add), (e′, t′, o′)) then
6 return

7 POLog← append(POLog, (e, t, add))

8 function delete (e, t):
9 remove_redundant(e, t, delete)

10 for (e′, t′, o′) ∈ POLog do
11 if redundant((e, t, delete), (e′, t′, o′)) then
12 return

13 POLog← append(POLog, (e, t, delete))

14 function read(k):
15 for (e, t, o) ∈ POLog do
16 if e.key = k then
17 return e

18 return undefined

19 function remove_redundant (e, t, o):
20 for (e′, t′, o′) ∈ POLog do
21 if redundant((e′, t′, o′), (e, t, o)) then
22 POLog← remove(POLog, (e′, t′, o′))

23 function redundant ((e,t,o), (e’,t’,o’)):
/* check whether (e, t, o) is made redundant by (e′, t′, o′) */

24 if o = delete then
25 return true

26 else if e = e′ ∧ t < t′ then
27 return true

28 else
29 return false

30 periodically
31 for (e, t, o) ∈ POLog do
32 if stable (t) then
33 POLog← remove(POLog, (e, t, o))
34 POLog← append(POLog, (e′,⊥, no-op))

35 end

23

4.5. FAULT TOLERANCE

much compatibility of the existing system and therefore I take a simpler approach by resolving them
based on the Erlang term order [21], an ordering of data types in Erlang. This could easily be extended
with other resolution strategies as well.

More operations on Mnesia tables Apart from the basic addition and deletion of elements, Mnesia
supports a range of other operations as well, including matching based on a pattern specification,
iterating over a table, finding all the keys of a table, etc. As an example, the originalselect/2 function
in Mnesia takes a table and a pattern specification as its argument. This is modified by appending wild
cards for the timestamp and operation name (since they are stored along with each tuple in the PO-
Log) to the input pattern before matching. Other functions like all_keys/1 are implemented with
similar ideas.

4.5 Fault tolerance

This section continues the discussion from §2.2.5 on Mnesia’s response to network partitions and
talks about how Hypermnesia addresses them. We continue to use the term transient failure and
communication failure to distinguish them.

4.5.1 Communication failure

Table 4.2 shows the sequence of operations and the corresponding states of each replica, and Figure 4.2
shows the graphical representation where three Mnesia nodes are initially connected to each other and
each has an element a in them. Then a partition occurs between node A and node B, as well as node A
and node C. During this partition, an addition of element c occurs at A while addition of element b
happens at B and C. When the partition recovers, replicas are now in an inconsistent state which will
be reported to the developer for manual resolution.

Operation Node A Node B Node C

A::add(a) {a} {a} {a}

B::add(b) {a} {a,b} {a,b}
A::add(c) {a,c} {a,b} {a,b}

inconsistent_database {a,c} {a,b} {a,b}

Table 4.2: Operations performed on each replica. Operations that happen during the network partition
sit between two horizontal lines.

Hypermnesia resolves this issue by buffering messages during the partition, as shown in Figure 4.3c.
During the communication failure, operations performed on replicas A and B are buffered until the
partition heals. By the property of op-based CRDTs (Proposition 2.3.2), replicas will converge after
the buffered messages are delivered. In this simple case, it is sufficient to achieve consistency by a simple

24

CHAPTER 4. DESIGN AND IMPLEMENTATION

A

B C

{x}

{x} {x}

(a) Initially every replica has an a in
its set.

A

B C

{x,z}

{x,y} {x,y}

(b) A partition (dashed lines) making
A temporarily unreachable. Mean-
while, y and element z are added to
the set.

A

B C

{x,z}

{x,y} {x,y}

Error!

(c) When the partition heals, Mnesia
would log an error message indicat-
ing inconsistent_database to
the user for manual resolution.

Figure 4.2: Illustration of a communication failure in Mnesia.

A

B C

{x}

{x} {x}

(a) Initially every replica has an a in
its set.

A

B C

{x,z}

{x,y} {x,y}

add(z)->B add(z)->C

add(y)->A

(b) Hypermnesia buffers messages
during the partition.

A

B C

{x,y,z}

{x,y,z} {x,y,z}

(c) When the communication fail-
ure recovers, buffered messages are
delivered and conflicts are resolved.

Figure 4.3: Hypermnesia buffers messages during communication failure and resolves conflicts afterwards.

25

4.5. FAULT TOLERANCE

set union. In a more complex case such as concurrent addition and deletion, the underlying op-based
CRDT (§4.4) will handle the conflict resolution logic to ensure convergence.

The challenge here is that Mnesia, by default, considers dead nodes not to be part of the cluster
and carries on operations as if they did not exist. This might be a desirable behaviour in transactions,
and developers can use the majority option to protect mission-critical data. But in an eventually
consistent system, this is less ideal since we want our system to repair itself automatically. Therefore
Hypermnesia considers dead nodes as part of the cluster and buffers operations for them.

4.5.2 Transient failure

When a transient network failure happens, communication between nodes temporarily stops but is
not long enough for the failure detector to act. Transactions will completely stall during this period.
Although dirty operations can carry on, replicas might end up in different states due to out-of-order
message delivery. For example, in Figure 4.4a, there might be a network failure between node B to A,
resulting in B’s add a being delayed. If messages are delivered as they arrive, then node A and node C
will end up in an inconsistent state. This is because addition and deletion in a set do not commute, and
the two purple operations (add and delete) are concurrent, and they are applied in a different order on
node A and node C, resulting in different final states.

Node A Node B Node C

ad
d a

add a

add a

delete a

add a

{a}
delete a

{}

{a}

add a

{a}

{a}

{}

(a) Mnesia replica states can diverge depending
on the ordering of delivery of operations. The
purple operations are causally concurrent.

Node A Node B Node C

(ad
d a, [

0,
1,
0]

)

(add a, [0, 1, 0])(add a, [1, 0, 0])
(delete a, [2, 0, 0])

add(a)

{(a,[1, 0, 0])}
delete(a)

{}

{(a,[0, 1, 0])}

add(a)

{(a,[0, 1, 0])}

{(a,[0, 1, 0]), (a,[1, 0, 0])}

{(a,[0, 1, 0])}

(b) Hypermnesia attaches vector timestamps to each message and
stores them along with actual elements in the set for conflict resol-
ution.

Figure 4.4: Mnesia and Hypermnesia’s response to transient network failure.

In order to achieve convergence, and hence eventual consistency, concurrent operations need to
commute. The exact semantics of whether addition or deletion wins depends on the actual application,
and to achieve convergence, it is sufficient to define consistent semantics across replicas. Add-wins
semantics is presented here but the remove-wins semantics is similar (Appendix D). To achieve add-
wins semantics with a pure op-based Set CRDT, we require deletions to only remove elements that
causally precede it, as captured by Line 20 in Algorithm 2. In Figure 4.4b, the deletion with timestamp
[2, 0, 0] removes the element (a,[1, 0, 0]) which is causally lower, but not (a,[0, 1, 0]) which is causally
concurrent.

26

CHAPTER 4. DESIGN AND IMPLEMENTATION

4.6 Summary

This chapter covers the design of Hypermnesia (§4.1) in terms of its APIs to minimise the amount
of code refactoring needed (§4.1.1). We also examined the suitability of different CRDTs and decided
to use pure op-based CRDTs primarily because of its similarity to Mnesia’s communication pattern
(§4.1.2). A prototype implementation is presented (§4.2), including a Tagged Causal Stable Broadcast
layer by extending the basic causal broadcast with timestamp and causal stability information (§4.3.2).
Practical optimisations such as the use of bag data structures are also considered (§4.4). We also briefly
talked about two patterns of network faults and how the AW-set and buffering of operations can help
us (§4.5).

27

Chapter 5

Evaluation

This chapter evaluates Hypermnesia against the proposed research questions (§1.1). We start by intro-
ducing new tests to ensure the correctness of the system (§5.2), and then outline the benchmarking
approach (§5.3), before performing measurements on a cluster of distributed physical machines in
terms of time (§5.3) and space (§5.4). This is followed by an examination of the fault tolerance prop-
erties of Hypermnesia (§5.5). We conclude the evaluation with a discussion on the API usability of
Hypermnesia (§5.6).

5.1 Setup

The experiments are performed on: (a) a single physical machine with multiple Erlang VMs connected
via the loopback interface, mainly used for correctness testing and some simple experiments; (b) mul-
tiple physical machines inside a data centre connected via ethernet switches, used for more extensive
benchmarking.

The single physical machine has an AMD 12-Core Processor and 16GiB DDR4 memory. It runs
the Ubuntu 22.04.2 LTS Operating System. The cluster consists of 10 machines, each has an Intel(R)
Xeon(R) CPU with 6 cores and 64GiB memory. They all run the Ubuntu 20.04.4 LTS Operating
System. More details on the test-bed setup can be found in Appendix E.

5.2 Correctness

The first question of whether eventual consistency is possible in Mnesia (Item RQ1 in §1.1) is concerned
with the design and correctness of the implementation, therefore correctness testing is performed.
The Mnesia source code has a regression test suite with about 5000 tests, covering various aspects of
the correctness such as transaction, dirty operations, storage engine, etc. They are run against the
additional code introduced by Hypermnesia. These mostly serve as tests for backwards compatibility,
since there is currently no test that simulates network partitions, nor tests targeting the new eventually
consistent API.

To cover the new EC API, the suite is extended by adding the following tests:

1. Unit tests on the behaviour of the AW-set and causal delivery, such as testing, among others,
whether the addition of an element is reflected in a subsequent read.

28

CHAPTER 5. EVALUATION

2. Unit Tests on database features such as index reads.

3. Integration tests for simulating network partitions, including multiple cases of concurrent ad-
dition and deletion.

There are about 20 new tests written to cover the new API. Both unit tests and integration tests
generally follow the pattern of the Erlang EUnit and Common Test framework [15, 17], respecting the
existing test suite structure. The network partition is simulated with a custom Erlang distribution
protocol [16], developed by RabbitMQ for their integration testing [46].

Hypermnesia passes all of the tests mentioned above, and the output log of the tests is included
in Appendix F.

5.3 Benchmarking

5.3.1 Benchmark overview

The second question (Item RQ2 in §1.1) is concerned with the efficiency of the eventual consistency
API in Hypermnesia. To answer this question, benchmarking is performed on the Hypermnesia
codebase. The original Mnesia repository has a built-in benchmarking suite for transactions. Briefly,
this benchmark is a simulation of workloads where Mnesia tables are used to store session data of, for
example, users logging into a website. There are four stages in this benchmark:

population initialises tables with randomly generated data.

warmup performs operations to bring data from memory to the cache.

actual benchmarking performs the actual benchmarking.

cooldown allows the system to clean up resources and ensures isolation between consecutive runs.

Typical operations in this benchmark include reading data of a particular session, creating a new
session for a subscriber of the service, deleting the details of a particular session, etc.

To compare different access contexts, the benchmark is extended from transactions to dirty and EC
operations. The extension is a substitution of transaction access context for dirty/EC access contexts.
One thing to note is that, unlike transactions, ACID properties are not guaranteed for dirty and EC
operations. Therefore it is common to have failures while reading data as messages might still be in
transit. In such cases, we retry several times before considering the operation as failed and aborting it.

The general benchmarking strategy in the following sections is to measure the throughput and
latency across three access contexts: dirty, transaction and EC, and make comparisons between them.
Several metrics are considered in this benchmarking process: number of generators, number of nodes,
table size, and workload types (§§5.3.2 to 5.3.5). We expect dirty operations to be the most performant
in terms of throughput and latency since it has the lowest operational complexity, while transactions

29

5.3. BENCHMARKING

to be the slowest due to its synchronisation overhead. EC operations should stay between those two,
and ideally as close to dirty operations as possible.

5.3.2 Number of generators

Figure 5.1 shows the comparison of throughput and latency against the number of generators per node
for different access contexts. Generators are clients sending requests to the Mnesia cluster. These
requests are sent to the nearest node (with respect to the generator) for processing.

Generally speaking, throughput (Figure 5.1a) increases as the number of generators per node in-
creases. For dirty operations, this saturates at around four generators per node, likely caused by I/O
bandwidth limitation. Transactions and EC throughput continue to increase as more generators are
added. This scalability property likely comes from the fact that Mnesia is, by default, a leaderless ar-
chitecture (§2.2.2) where every node can process requests. Such design choices help Mnesia obtain
more parallelism as we add more nodes into the cluster. Latency (Figure 5.1b), on the other hand,
generally stays the same. Dirty operations do show a higher increasing rate than the other two, possibly
because the overhead of more generators (and hence more messages to process) are more significant in
a previously low-latency environment (the latency of dirty operations is on the order of 10 µs).

The increasing throughput and stable latency of EC operations demonstrate its scalability against
the number of clients. Moreover, as the number of generators per node increases, the throughput of
EC operations approaches about half the throughput of dirty operations, whereas initially it was only
about one-tenth. This is a desirable property in a replicated system as it is scalable with respect to the
number of clients (requests) it can handle.

1 2 3 4 5
Number of generators per node

104

105

Th
ro

ug
hp

ut
 (l

og
 sc

al
e)

dirty
ec
transaction

(a) Throughput

1 2 3 4 5
Number of generators per node

101

102

103

La
te

nc
y

(lo
g

sc
al

e) dirty
ec
transaction

(b) Latency

Figure 5.1: Throughput and latency against the number of generators. More generators generally bring
higher throughput and latency.

5.3.3 Cluster size

This section evaluates the throughput and latency against the number of nodes in the Mnesia cluster.
Based on the original design of Mnesia (§2.2), the number of nodes used in a cluster generally does not

30

CHAPTER 5. EVALUATION

exceed ten [28]. Figure 5.2a and Figure 5.2b show the throughput and latency change with respect to the
number of nodes, with a fixed number (2) of generators. We observe that the throughput decreases and
the latency increases as the number of nodes increases, suggesting that adding more nodes inevitably
introduces overhead into the system, e.g. more messages to send, and more data to process. Keeping
the number of generators the same means we keep the total amount of client requests the same but
add duplicate work by adding more replicas, therefore the system experiences more overhead.

3 4 5 6 7 8 9
Number of nodes

103

104

105

Th
ro

ug
hp

ut
 (l

og
 sc

al
e)

dirty
ec
transaction

(a) Throughput with a fixed number of generators.

3 4 5 6 7 8 9
Number of nodes

101

102

103

La
te

nc
y

(lo
g

sc
al

e) dirty
ec
transaction

(b) Latency with a fixed number of generators.

3 4 5 6 7 8 9
number of nodes

104

105

Th
ro

ug
hp

ut
 (l

og
 sc

al
e)

dirty
ec
transaction

(c) Throughput with varying number of generators.

3 4 5 6 7 8 9
Number of nodes

101

102

103

La
te

nc
y

(lo
g

sc
al

e)

dirty
ec
transaction

(d) Latency with varying number of generators.

Figure 5.2: Throughput and latency against the number of nodes with fixed or varying number of gen-
erators. Adding replicas increases the overhead, but can be reduced by adding generators and increasing
parallelism.

However, we could also increase the number of generators as we have more replicas, which is gen-
erally what happens in a real deployment as the number of nodes in a cluster of replicated machines
increases. Figure 5.2c and Figure 5.2d show the throughput and latency as the number of generators
increases linearly with the number of nodes. For all three operations, throughput increase is observed.
Dirty operations’ throughput saturates at about 7 nodes, when the message queue backlog starts to
become the bottleneck. In terms of latency, there is an increase in all three. EC operations demonstrate
around 13x higher throughput than transactions when there are nine nodes.

A higher replication factor often implies extra work for the system, thus resulting in lower through-
put and higher latency. However, we could offset this with more clients and hence more parallelism.
The overall effect is an increasing throughput as the number of nodes increases, albeit with an inevit-

31

5.3. BENCHMARKING

able sacrifice in latency. For EC operations, this is approximately 60 µs. This property is present in all
three access contexts.

5.3.4 Workload types

Figure 5.3 compares the throughput and latency of three access contexts against different workloads.
Dirty operations are about 50x better than transactions, while EC operations lie between them (again),
with about 10x higher throughput than transactions.

Note that if the read percentage is 100%, i.e. a read-only workload, the transaction gets close
to or even surpasses the performance of EC operations. This is due to an optimisation done in the
benchmark where it uses a synchronous dirty operation for reading data rather than a full two-phase
commit, which removes the cost of locking, and multi-round communication time. It is even faster
than EC operations as it does not need to go through the causal broadcast layer and the processing
logic of an AW-set.

0.0 0.1 0.2 0.3 0.4
Write percentage

104

105

106

Th
ro

ug
hp

ut
 (l

og
 sc

al
e)

dirty
ec
transaction

(a) Throughput

0.0 0.1 0.2 0.3 0.4
Write percentage

100

101

102

103

La
te

nc
y

(lo
g

sc
al

e)

dirty
ec
transaction

(b) Latency

Figure 5.3: Throughput and latency against different workload types. Read-heavy workloads are faster
than write-heavy ones in all three cases.

Write-intensive workloads are generally slower than read-intensive ones, since writes need to involve
all replicas in the cluster, while reads can be done locally (if the data is present on the local node, which
is the case in this benchmark). This trend is, again, true for all three contexts. As long as the workload
is not read-only, EC operations performs better than transactions.

5.3.5 Table size

Figure 5.4 shows the change in throughput and latency as we vary the size of the subscriber table. There
are five tables in total in this benchmark, and the subscriber table stores the data for users subscribing
to a service, which is the most frequently changed and the largest one among all five tables. Therefore
I choose to vary the subscriber table size during the initial table population.

A larger table generally makes it slower to read/write data, which affects dirty operations but has
less impact on transactions and EC operations. Similar to the behaviour in §5.3.2, the low-latency dirty

32

CHAPTER 5. EVALUATION

operations are more sensitive to even small changes in the latency of each operation, and exhibits a
larger increase in latency.

103 104 105

Subscriber table size (log scale)

104

105

Th
ro

ug
hp

ut
 (l

og
sc

al
e)

dirty
ec
transaction

(a) Throughput

103 104 105

Subscriber table size (log scale)

101

102

103

La
te

nc
y

(lo
gs

ca
le

) dirty
ec
transaction

(b) Latency

Figure 5.4: Throughput and latency against table size. Dirty operations are affected the most.

Table size’s impact on the performance of Hypermnesia mainly comes from the extra time in access-
ing elements of a larger table. For EC operations, the extra overhead of periodic cleaning of timestamps
could also play a role (§4.4.2). However, this overhead is still acceptable as EC operations still have
about 25x higher throughput than transactions.

5.4 Space overhead

This section evaluates the space overhead of Hypermnesia. Generally speaking, CRDTs rely heavily on
metadata to keep track of the history of operations and hence has a large overhead in its space usage [7].
In the case of implementing a pure AW-set, the primary metadata associated with each element is
the vector clock timestamp, which grows linearly with the number of nodes in the cluster, although
garbage collection is implemented to reduce its impact (§4.4).

Figure 5.5a shows the pure op-based set’s overhead compared to the default set in Mnesia. The
overhead grows linearly with respect to the number of nodes as expected. Note that this is a static
process, i.e. each time the populator will put the same number of elements into the set, therefore
the lines are perfectly straight with no variance. Figure 5.5b shows the overhead after running the
benchmark. This is a dynamic process during which the causal stability optimisation is applied, but
not in the previous figure (we discuss the reason below). Observe that the causal stability optimisation
is able to reduce the overhead by up to 30%.

Despite space optimisations, the space overhead is still relatively large, especially when the number
of nodes exceeds five. There are several reasons for this:

• The underlying implementation of the PO-Log is a set-like structure rather than a partially
ordered log (§4.4.4). This complicates the implementation of causal stability optimisation as it
is now harder to find all elements with a timestamp smaller than the stable one.

33

5.5. FAULT TOLERANCE

1 2 3 4 5 6 7
Number of nodes

40

50

60

70

80

90

100

110

Sp
ac

e
ov

er
he

ad
 (%

)

500 subscribers
5000 subscribers
50000 subscribers

(a) Space overhead after populating the table.

1 2 3 4 5 6 7
Number of nodes

0

20

40

60

80

100

Sp
ac

e
ov

er
he

ad
 (%

)

500 subscribers
5000 subscribers
5000 subscribers

(b) Space overhead after running the benchmark.

Figure 5.5: Space overhead. The number of subscribers represents the size of the table.

• The causal stability optimisation relies on nodes continuously receiving updates from other
nodes to determine timestamp stability. This is not always possible since it is common for a
node to only receive messages from others (maybe no client sends requests to it). This is why
the optimisation is not applied in the population phase. Bauwens and Gonzalez Boix [7] made
a similar observation and proposed a solution based on an eager collection of metadata.

Memory management has been an important issue in CRDT research but has yet to attract much
attention [7]. The current optimisation using causal stability is less effective than one would hope
for. In a typical setup of three nodes, the extra space needed is around 30–40%. For this reason,
Hypermnesia is limited to relatively small clusters, but this is acceptable since Mnesia is designed for
small clusters in the first place [28]. We discuss more on how to optimise the space overhead of the Set
CRDT in §6.2.

5.5 Fault tolerance

§4.5 discusses how Mnesia and Hypermnesia respond to network partitions. In this section, we evaluate
Hypermnesia against these two situations to answer the research question Item RQ3 in §1.1.

Communication failure Mnesia does not handle communication failure by default and asks ap-
plication developers to resolve conflicts. Hypermnesia buffers operations during the partition until it
recovers (Figure 4.3c). It then sends the buffered message and resolves conflicts automatically.

Transient failure As discussed in §2.2.5, during a transient failure, transactions stall until the par-
tition heals. We measure this effect by examining the throughput change in a simulated network
partition, as shown in Figure 5.6. Figure 5.6a shows how the throughput changes through time, which
is relatively stable when there is no partition. On the other hand, Figure 5.6b shows the throughput
when there is a (simulated) network partition, lasting around 10 seconds. Dirty and EC operations

34

CHAPTER 5. EVALUATION

remain about the same, but transaction throughput drops down to zero during the partition period.
This is expected since the two-phase commit protocol requires a reply from all participating nodes.

0 20 40 60 80
Time (s)

104

105

Th
ro

ug
hp

ut
 (l

og
 sc

al
e)

dirty
ec
transaction

(a) No partition.

0 20 40 60 80
Time (s)

102

103

104

105

Th
ro

ug
hp

ut
 (l

og
 sc

al
e)

transaction normal
transaction partition
ec normal
ec partition

dirty normal
dirty partition
partition

(b) A partition of 10 seconds, dashed lines indicate the
start and end of the partition.

Figure 5.6: Throughput changes against time. Network partition affects the transaction throughput but
not dirty and EC throughputs.

In summary, Hypermnesia adds fault tolerance to Mnesia in the presence of network partitions:
1. automatic conflict resolution after a communication failure; 2. nodes remain available during transi-
ent failure, with guaranteed convergence when the partition heals.

5.6 APIs and refactoring

This section attempts to answer the research question Item RQ4 concerning refactoring. First, a
summary of the code changes is given for Hypermnesia, followed by experimental modifications of
real-world applications to demonstrate Hypermnesia’s usability.

Listing 5.1 shows the code changes needed from transactions/dirty operations (first two columns)
to EC operations (last column). Note that refactoring is often just one line of change. Another change
is the type option while creating a Mnesia table, as shown in Listing 5.2. And that is all the change
needed to use the new API.

The second step is to apply the refactoring described above in actual production codebases such as
RabbitMQ [56] and ejabberd [44], and run the regression test suites against such changes. To be more
cautious while refactoring, most changes are from asynchronous dirty operations to asynchronous
EC operations. Hypermnesia successfully passes the test suites of both applications with little effort
in changing the source code.

It is worth noting that this is not a formal usability study of the new API. A more rigorous study
requires much more extensive testing and understanding of the project codebases, which requires lots
of engineering effort and is beyond the scope of this project. Nevertheless, we believe this evaluation
is a first step towards making Hypermnesia more usable and production-ready.

35

5.6. APIS AND REFACTORING

mnesia:activity(transaction,
fun () ->

mnesia:write(tab, tup),
mnesia:read(tab, key)

end).

(a) transactions with activity/2.

mnesia:activity(async_dirty,
fun () ->

mnesia:write(tab,tup),
mnesia:read(tab,key)

end).

(b) dirty with activity/2.

mnesia:activity(async_ec,
fun () ->

mnesia:write(tab,tup),
mnesia:read(tab,key)

end).

(c) EC operations with activity/2

mnesia:transaction(
fun () ->

mnesia:write(tab,tup),
mnesia:read(tab,key)

end).

(d) transactions with transaction/1

mnesia:async_dirty(
fun () ->

mnesia:write(tab,tup),
mnesia:read(tab,key)

end).

(e) dirty with async_dirty/1

mnesia:async_ec(
fun () ->

mnesia:write(tab,tup),
mnesia:read(tab,key)

end).

(f) EC operations with async_ec/1

Listing 5.1: Changing from transaction or dirty operations to EC operations.

ejabberd_mnesia:create(?MODULE,
oauth_client, [{disc_copies,
[node()]},

↪→

↪→

{attributes, record_info(fields,
oauth_client)}, {type, set}]).↪→

(a) Original code creating a Mnesia table, using a set data
structure.

ejabberd_mnesia:create(?MODULE,
oauth_client, [{disc_copies,
[node()]},

↪→

↪→

{attributes, record_info(fields,
oauth_client)}, {type, pawset}]).↪→

(b) New code using the pure AW-set (pawset).

Listing 5.2: Adding a type declaration when creating a Mnesia table. Code excerpt modified from ejab-
berd [44].

36

CHAPTER 5. EVALUATION

5.7 Summary

In this chapter, we evaluated Hypermnesia against the research questions of this project (§1.1). The res-
ults show that Hypermnesia can produce correct results in spite of network delays (§5.2), and partitions
(§5.5), thus demonstrating the possibility of eventual consistency in Mnesia and its role in automatic
conflict resolution (Items RQ1 and RQ3). Furthermore, benchmarking results show that EC opera-
tions can achieve approximately 10–20x better throughput and lower latency than transactions, and
its performance can get close to dirty operations (recall that dirty operations are much faster than
transactions in Mnesia from §2.2.4) when increasing the scale of the experiment (§5.3). This makes EC
operations competitive for real-world applications (Item RQ2). Finally, §5.6 evaluates the usability of
the new API (Item RQ4) and shows that Hypermnesia’s API enables minimum code refactoring for
adoption in real-world projects.

37

Chapter 6

Conclusions

In this project, we looked at Hypermnesia, an extension to the Mnesia DBMS incorporating eventual
consistency. We conclude this report by summarising the accomplishments of Hypermnesia, high-
lighting key contributions (§6.1) and pointing out ways Hypermnesia can be improved in the future
(§6.2).

6.1 Accomplishments

Qualitatively speaking, Hypermnesia’s API is designed to minimise the amount of code refactoring
(§4.1) and fits well into the existing Mnesia access contexts, making it easier to be adopted in existing
open source codebases (§5.6) such as RabbitMQ and ejabberd [44, 56]. Moreover, the new eventual
consistency API passes the extended Mnesia regression test suite (consisting of ≈ 5000 unit tests),
including (≈ 20) additional tests that cover network partition, AW-set and RW-set behaviours and
causal broadcast (§5.2). It also allows the database to continue operating while there is a partition and
automatically resolves potential conflicts after the partition recovers (§5.5).

Quantitatively speaking, Hypermnesia accomplishes the above functionalities while providing
about 10–20 times higher throughput and lower latency than Mnesia’s transactions (§5.3). Thanks
to Mnesia’s performant dirty operations, Hypermnesia can be designed to guarantee eventual consist-
ency without sacrificing much performance, taking advantage of the performant architecture of dirty
operations.

6.2 Future work

Finally, I list some possible extensions to Hypermnesia:

• At the moment EC operations do not interact well with Mnesia’s transactions and dirty op-
erations, i.e. they cannot be used on the same table. As mentioned in §3.1.3, it is possible to
add support for transactions that execute and update queries on a consistent snapshot and then
resolve conflicts between different snapshots with CRDTs, and there are many protocols de-
veloped for this purpose [43, 51]. Now that Mnesia has built-in support for CRDTs and eventual
consistency, it could be further enhanced to support lightweight but highly available transac-
tions.

38

CHAPTER 6. CONCLUSIONS

• Hypermnesia currently works for in-memory tables only. Although in-memory caching tends
to be the way Mnesia is used [38], Hypermnesia could be extended to support disk tables in the
future, or even custom backends. Different data structures might open the door for better space
optimisation which is currently less feasible with ets and dets.

• Hypermnesia chooses to use pure op-based CRDTs for its simplicity and similarity to Mnesia’s
architecture. δ-CRDTs is another popular choice among eventually consistent databases [33],
which might be worthwhile experimenting with.

39

Bibliography

[1] P. S. Almeida, A. Shoker, and C. Baquero. Delta State Replicated Data Types.
Journal of Parallel and Distributed Computing, 111:162–173, Jan. 2018. ISSN 07437315.
doi:10.1016/j.jpdc.2017.08.003.

[2] J. L. Andersen. Mnesia and CAP, Sept. 2014.

[3] V. Balegas. Introducing Rich-CRDTs · ElectricSQL, May 2022.

[4] C. Baquero, P. S. Almeida, and A. Shoker. Making operation-based CRDTs operation-based.
In Proceedings of the First Workshop on Principles and Practice of Eventual Consistency, PaPEC
’14, pages 1–2, New York, NY, USA, Apr. 2014. Association for Computing Machinery. ISBN
978-1-4503-2716-9. doi:10.1145/2596631.2596632.

[5] C. Baquero, P. S. Almeida, and A. Shoker. Pure Operation-Based Replicated Data Types, Oct.
2017.

[6] J. Bauwens and E. G. Boix. Improving the Reactivity of Pure Operation-Based CRDTs.
In Proceedings of the 8th Workshop on Principles and Practice of Consistency for Distributed
Data, pages 1–6, Online United Kingdom, Apr. 2021. ACM. ISBN 978-1-4503-8338-7.
doi:10.1145/3447865.3457968.

[7] J. Bauwens and E. Gonzalez Boix. Memory efficient CRDTs in dynamic environments. In
Proceedings of the 11th ACM SIGPLAN International Workshop on Virtual Machines and Inter-
mediate Languages, VMIL 2019, pages 48–57, New York, NY, USA, Oct. 2019. Association for
Computing Machinery. ISBN 978-1-4503-6987-9. doi:10.1145/3358504.3361231.

[8] D. Bermbach and J. Kuhlenkamp. Consistency in Distributed Storage Systems. In V. Gramoli
and R. Guerraoui, editors, Networked Systems, Lecture Notes in Computer Science, pages 175–
189, Berlin, Heidelberg, 2013. Springer. ISBN 978-3-642-40148-0. doi:10.1007/978-3-642-40148-
0_13.

[9] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley Pub. Co, Reading, Mass, 1987. ISBN 978-0-201-10715-9.

[10] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group multic-
ast. ACM Transactions on Computer Systems, 9(3):272–314, Aug. 1991. ISSN 0734-2071.
doi:10.1145/128738.128742.

[11] F. Cesarini. Companies Who Use Erlang, Sept. 2019.

40

https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.1145/2596631.2596632
https://doi.org/10.1145/3447865.3457968
https://doi.org/10.1145/3358504.3361231
https://doi.org/10.1007/978-3-642-40148-0_13
https://doi.org/10.1007/978-3-642-40148-0_13
https://doi.org/10.1145/128738.128742

BIBLIOGRAPHY

[12] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 2 edition, 2002. doi:10.1017/CBO9780511809088.

[13] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and
D. Terry. Epidemic algorithms for replicated database maintenance. In Proceedings of the Sixth
Annual ACM Symposium on Principles of Distributed Computing, PODC ’87, pages 1–12, New
York, NY, USA, Dec. 1987. Association for Computing Machinery. ISBN 978-0-89791-239-6.
doi:10.1145/41840.41841.

[14] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. ACM SIGMOD Record,
18(2):399–407, June 1989. ISSN 0163-5808. doi:10.1145/66926.66963.

[15] Ericsson AB. Erlang – Common Test Basics. ht-
tps://www.erlang.org/doc/apps/common_test/basics_chapter.html, Mar. 2023.

[16] Ericsson AB. Erlang – How to Implement an Alternative Carrier for the Erlang Distribution.
https://www.erlang.org/doc/apps/erts/alt_dist.html, Mar. 2023.

[17] Ericsson AB. Erlang – EUnit - a Lightweight Unit Testing Framework for Erlang. ht-
tps://www.erlang.org/doc/apps/eunit/chapter.html, Mar. 2023.

[18] Ericsson AB. Erlang – Mnesia User’s Guide. ht-
tps://www.erlang.org/doc/apps/mnesia/users_guide.html, Mar. 2023.

[19] Ericsson AB. Erlang – mnesia. https://www.erlang.org/doc/man/mnesia.html, Mar. 2023.

[20] Ericsson AB. Erlang – OTP Design Principles. ht-
tps://www.erlang.org/doc/design_principles/users_guide.html, Mar. 2023.

[21] Ericsson AB. Erlang – Erlang Reference Manual. ht-
tps://www.erlang.org/doc/reference_manual/users_guide.html, Mar. 2023.

[22] Ericsson AB. Erlang – STDLIB User’s Guide. ht-
tps://www.erlang.org/doc/apps/stdlib/users_guide.html, Mar. 2023.

[23] Erlang Solutions. MongooseIM platform. Erlang Solutions, Apr. 2023.

[24] B. Farinier, T. Gazagnaire, and A. Madhavapeddy. Mergeable persistent data structures. In
Vingt-Sixièmes Journées Francophones Des Langages Applicatifs (JFLA 2015), Jan. 2015.

[25] S. Gilbert and N. Lynch. Perspectives on the CAP Theorem. Computer, 45(2):30–36, Feb. 2012.
ISSN 1558-0814. doi:10.1109/MC.2011.389.

[26] F. Guidec, Y. Mahéo, and C. Noûs. Supporting conflict-free replicated data types in oppor-
tunistic networks. Peer-to-Peer Networking and Applications, 16(1):395–419, Jan. 2023. ISSN
1936-6450. doi:10.1007/s12083-022-01404-6.

41

https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/66926.66963
https://doi.org/10.1109/MC.2011.389
https://doi.org/10.1007/s12083-022-01404-6

BIBLIOGRAPHY

[27] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACM Comput-
ing Surveys, 15(4):287–317, Dec. 1983. ISSN 0360-0300. doi:10.1145/289.291.

[28] F. Hébert. Learn You Some Erlang for Great Good!: A Beginner’s Guide. No Starch Press, San
Francisco, 2013. ISBN 978-1-59327-504-4.

[29] R. Hipp. Most Widely Deployed SQL Database Engine. ht-
tps://www.sqlite.org/mostdeployed.html, 2019.

[30] M. Kleppmann. Designing Data-intensive Applications: The Big Ideas Behind Reliable, Scalable,
and Maintainable Systems. O’Reilly Media, 2017. ISBN 978-1-4493-7332-0.

[31] M. Kleppmann and T. Harris. Distributed Systems, Cambridge CST Part IB lecture notes, 2022.

[32] M. Kleppmann, A. Wiggins, P. van Hardenberg, and M. McGranaghan. Local-first software:
You own your data, in spite of the cloud. In Proceedings of the 2019 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software,
Onward! 2019, pages 154–178, New York, NY, USA, Oct. 2019. Association for Computing
Machinery. ISBN 978-1-4503-6995-4. doi:10.1145/3359591.3359737.

[33] R. Klophaus. Riak Core: Building distributed applications without shared state. In
ACM SIGPLAN Commercial Users of Functional Programming, CUFP ’10, page 1, New York,
NY, USA, Oct. 2010. Association for Computing Machinery. ISBN 978-1-4503-0516-7.
doi:10.1145/1900160.1900176.

[34] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications
of the ACM, 21(7):558–565, July 1978. ISSN 0001-0782. doi:10.1145/359545.359563.

[35] E. Levy. RabbitMQ vs Kafka: Use Cases, Performance & Architecture, Feb. 2022.

[36] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, Availability, and Convergence. Technical
report, May 2012.

[37] R. C. Martin. Design Principles and Design Patterns. 2000.

[38] H. Mattsson, H. Nilsson, and C. Wikström. Mnesia — A Distributed Robust DBMS for Tele-
communications Applications. In G. Gupta, editor, Practical Aspects of Declarative Languages,
Lecture Notes in Computer Science, pages 152–163, Berlin, Heidelberg, 1998. Springer. ISBN
978-3-540-49201-6. doi:10.1007/3-540-49201-1_11.

[39] HAKAN. MATTSSON. Mnesia internals, Oct. 1999.

[40] HAKAN. MATTSSON. Mnesia implementation documentation, Nov. 2009.

[41] P. Mineiro. Dukes of Erl: Network partition ... oops, Mar. 2008.

42

https://doi.org/10.1145/289.291
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/1900160.1900176
https://doi.org/10.1145/359545.359563
https://doi.org/10.1007/3-540-49201-1_11

BIBLIOGRAPHY

[42] N. Preguiça. Conflict-free Replicated Data Types: An Overview, June 2018.

[43] N. Preguica, M. Zawirski, A. Bieniusa, S. Duarte, V. Balegas, C. Baquero, and M. Shapiro.
SwiftCloud: Fault-tolerant geo-replication integrated all the way to the client machine. In 2014
IEEE 33rd International Symposium on Reliable Distributed Systems Workshops, pages 30–33,
Nara, Japan, Oct. 2014. IEEE. ISBN 978-1-4799-7361-3. doi:10.1109/SRDSW.2014.33.

[44] Processone. Processone/ejabberd. ProcessOne, Apr. 2023.

[45] M. Raasveldt and H. Mühleisen. DuckDB: An Embeddable Analytical Database. In Proceedings
of the 2019 International Conference on Management of Data, SIGMOD ’19, pages 1981–1984, New
York, NY, USA, June 2019. Association for Computing Machinery. ISBN 978-1-4503-5643-5.
doi:10.1145/3299869.3320212.

[46] RabbitMQ. Inet_tcp_proxy. RabbitMQ, Aug. 2022.

[47] Redis. Diving into Conflict-Free Replicated Data Types (CRDTs).
https://redis.com/blog/diving-into-crdts/, Mar. 2022.

[48] J. Saltzer and M. F. Kaashoek. Principles of Computer System Design: An Introduction. Morgan
Kaufmann, May 2009. ISBN 978-0-08-095942-9.

[49] F. B. Schmuck. The Use of Efficient Broadcast Protocols in Asynchronous Distributed Systems.
Technical report, Cornell University, Aug. 1988.

[50] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free Replicated Data Types.
2011.

[51] M. Shapiro, A. Bieniusa, N. Preguiça, V. Balegas, and C. Meiklejohn. Just-Right Consistency:
Reconciling availability and safety, Jan. 2018.

[52] D. Shukla. Azure Cosmos DB: Pushing the frontier of globally distributed databases, Sept. 2018.

[53] I. T. Tomter and W. Yu. Augmenting SQLite for Local-First Software. In L. Bellatreche, M. Du-
mas, P. Karras, R. Matulevičius, A. Awad, M. Weidlich, M. Ivanović, and O. Hartig, editors, New
Trends in Database and Information Systems, volume 1450, pages 247–257. Springer International
Publishing, Cham, 2021. ISBN 978-3-030-85081-4 978-3-030-85082-1. doi:10.1007/978-3-030-
85082-1_22.

[54] A. van der Linde, J. Leitão, and N. Preguiça. ∆-CRDTs: Making δ-CRDTs delta-based. In
Proceedings of the 2nd Workshop on the Principles and Practice of Consistency for Distributed
Data, pages 1–4, London United Kingdom, Apr. 2016. ACM. ISBN 978-1-4503-4296-4.
doi:10.1145/2911151.2911163.

43

https://doi.org/10.1109/SRDSW.2014.33
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1007/978-3-030-85082-1_22
https://doi.org/10.1007/978-3-030-85082-1_22
https://doi.org/10.1145/2911151.2911163

BIBLIOGRAPHY

[55] P. Viotti and M. Vukolić. Consistency in Non-Transactional Distributed Storage Systems. ACM
Computing Surveys, 49(1):19:1–19:34, June 2016. ISSN 0360-0300. doi:10.1145/2926965.

[56] VMware. RabbitMQ Server. RabbitMQ, Apr. 2023.

[57] W. Vogels. Eventually Consistent: Building reliable distributed systems at a worldwide scale
demands trade-offs?between consistency and availability. Queue, 6(6):14–19, Oct. 2008. ISSN
1542-7730. doi:10.1145/1466443.1466448.

[58] M. Vorontsov. Mikhail Vorontsov - ForgETS: A globally distributed database - Code Beam STO,
June 2018.

[59] S. Weiss, P. Urso, and P. Molli. Logoot-Undo: Distributed Collaborative Editing System on P2P
Networks. IEEE Transactions on Parallel and Distributed Systems, 21(8):1162–1174, Aug. 2010.
ISSN 1558-2183. doi:10.1109/TPDS.2009.173.

[60] U. Wiger. Writing an Unsplit method, May 2023.

[61] U. Wiger. [erlang-questions] unsplit - resolving mnesia inconsistencies, Thu Feb 4 22:39:02 CET
2010.

[62] Wikipedia contributors. LYME (software bundle). Wikipedia, Dec. 2020.

[63] Wikipedia contributors. Eventual consistency. Wikipedia, Apr. 2023.

[64] W. Yu and C.-L. Ignat. Conflict-Free Replicated Relations for Multi-Synchronous Database
Management at Edge. In 2020 IEEE International Conference on Smart Data Services (SMDS),
pages 113–121, Oct. 2020. doi:10.1109/SMDS49396.2020.00021.

[65] W. Yu and S. Rostad. A low-cost set CRDT based on causal lengths. In Proceedings of the 7th
Workshop on Principles and Practice of Consistency for Distributed Data, PaPoC ’20, pages 1–6,
New York, NY, USA, Apr. 2020. Association for Computing Machinery. ISBN 978-1-4503-
7524-5. doi:10.1145/3380787.3393678.

44

https://doi.org/10.1145/2926965
https://doi.org/10.1145/1466443.1466448
https://doi.org/10.1109/TPDS.2009.173
https://doi.org/10.1109/SMDS49396.2020.00021
https://doi.org/10.1145/3380787.3393678

Appendix A

Benchmark configuration file

Appendix A shows an example benchmark configuration file for evaluating Hypermnesia. Some inter-
esting fields includegenerator_duration, which is the amount of benchmarking time,n_replicas,
which is the number of replicas in the cluster, n_generators_per_node, which can be thought of
as the number of clients on each generator node.

{start_module, slave }.
{partition_time, 0 }.
{cookie,bench_cookie}.
{activity, async_ec }.
{generator_profile, random }.
{rw_ratio, 0.5 }.
{statistics_detail, debug }.
{generator_warmup, 12000 }.
{generator_duration, 90000 }.
{generator_cooldown, 12000 }.
{generator_nodes, ['bench1@my-pc', 'bench2@my-pc', 'bench3@my-pc'] }.
{use_binary_subscriber_key, false}.
{n_generators_per_node, 1 }.
{write_lock_type, sticky_write}.
{table_nodes, ['bench1@my-pc', 'bench2@my-pc', 'bench3@my-pc'] }.
{storage_type, ram_copies}.
{n_replicas, 3 }.
{n_fragments, 1}.
{n_subscribers, 50000 }.
{n_groups, 100}.
{n_servers, 20}.

Listing A.1: Example benchmark configuration file.

A1

Appendix B

Repository and demo

A demo (Figure B.1) of Hypermnesia is uploaded on Youtube (link omitted for blind marking) for
those who are interested in watching it. The code repository is also available on Github.

Figure B.1: Demo

B1

Appendix C

State-based CRDTs details

This chapter complements §2.3.1 with more formal details of state-based CRDTs, along with examples.

C.1 Properties

A state-based CRDT communicates by propagating the entire state of the data type with other parties,
and perform the merge operation with a merge (sometimes called join) operator to converge towards
the least upper bound of the two states. They are sometimes also referred to as Convergent Replic-
ated Data Types (CvRDTs). I start by defining some of the mathematical properties that state-based
CRDTs, leading towards its convergence property (Proposition C.1.1), which are essential in eventual
consistency.

Definition C.1.1 (Least Upper Bound (LUB) [50]). We define the LUB of two states x and y, partially
ordered by⊑v to be m = x ⊔v y, and there is no m′ such that x ⊑v m′ ∧ y ⊑v m′. The operator
defined above⊔v is also called the join operator.

We observe that the join operator is idempotent (x ⊔ y = x ⊔ y ⊔ y = x ⊔ x ⊔ y), commutative
(x ⊔ y = y ⊔ x) and associative. We then define the join semilattice to be:

Definition C.1.2 (Join Semilattice [12]). An ordered set (S,⊑v), equipped with a join operator⊔v is
a join semilattice if and only if ∀x, y ∈ S,∃m = x ⊔v y

Now a state-based CRDT consists of a triple (S,M,Q) where S is a join semilattice, Q is a set of
query functions and M is a set of mutators, where each m takes in one state X ∈ S and produce a new
state X ′ = m(X). Moreover, mutators are defined to be inflations, i.e., for any m and X , we have
X ⊑ m(X).

This definition gives us some nice properties of state-based CRDTs. In particular, if we define our
merge operator to be the join operator over the join semilattice, then our merge process is converging
towards the LUB of the most recent values. As an example, we consider the ordered set of natural
numbers as (N, <), ordered by the less-than relation. Then this is indeed a join semilattice since the
max operator acts as the LUB of every two natural numbers x and y, i.e. x ⊔ y = max(x, y). This
property of the join semilattice gives the following guarantee:

Proposition C.1.1 ([50]). Any two object replicas of a state-based CRDTs eventually converge, assuming
the system transmits payload infinitely often between pairs of replicas over eventually-reliable point-to-
point channels.

C1

C.2. DELTA-STATE CRDTS

Note that we still require delivery of states to guarantee convergence, i.e. we need every message to
eventually reach every replica of the cluster. However, this is the only requirement, since the merge
operator is idempotent and commutative, we can tolerate arbitrary message reordering and repeated
delivery of messages.

The downside of the state-based CRDT is that it requires the dissemination of the entire state,
which makes it not suitable for collections of large states, such as a big set of elements. Almeida et al.
[1] proposes a variant of state-based CRDTs to address this issue, which we discuss below.

C.2 Delta-state CRDTs

Delta-State Conflict-Free Replicated Data Types (δ-CRDTs) [1] is a new kind of state-based CRDTs
that disseminates only the changing part of the operation as a δ-state, hence reducing the communica-
tion cost.

Definition C.2.1 (Delta-mutator [1]). A delta-mutator mδ is a function, corresponding to an update
operation, which takes a state X in a join semilattice S as its parameter and returns a delta-mutation
mδ(X) ∈ S.

Definition C.2.2 (Delta-group [1]). A delta-group is inductively defined as either a delta-mutation
or a join of several delta-groups.

Definition C.2.3 (δ-CRDT [1]). A δ-CRDT consists of a triple (S,M δ, Q), where S and Q are
defined as before, and M δ is a set of delta-mutators. The state transition is defined to be one of the
below:

Joining with a delta-state:
X ′ = X ⊔mδ(X)

Joining with a delta-group D:
X ′ = X ⊔D

This definition decouples the state transition from applying the mutation, since now we first mutate
to get a delta-state, then we apply the join to change our state. The results of a δ-mutator looks almost
like producing an operation in op-based CRDTs, apart from the requirement that the result must also
be a state in the join semilattice.

This definition is sufficient if the CRDT that we want to build does not require causal consistency,
such as a counter. But more is needed if we do care about causal order, like (the addition and deletion
in a) set. We therefore make some additional constructions:

A causal context (sometimes also called causal history) is a collection of events/dots defined as fol-
lows [1]:

C2

APPENDIX C. STATE-BASED CRDTS DETAILS

CausalContext = P(I× N)

max
i

(c) = max({n | (i, n) ∈ c} ∪ {0})

nexti(c) = (i,max
i

(c) + 1)

where I is the set of replica identifiers, N is the natural numbers. A causal context allows us to tag each
event in our system with a unique identifier (or a dot) (i, n), signalling that the event happens at replica
i at point n.

A dot store acts as a container for data-type specific information. It can be queried with the dots
function which takes in a dot store and returns the set of dots in the store. There are three types of dot
store, defined as [1]

DotSet : DotStore = P(I× N)

DotFun⟨V : Lattice⟩ : DotStore = P(I× N) ↪→ V

DotMap⟨K,V : DotStore⟩ : DotStore = K ↪→ V

And we can now combine the causal context and dot store to construct states for δ-CRDTs [1]:

Causal⟨T : DotStore⟩ = T × CausalContext

when T : DotSet

(s, c) ⊔ (s′, c′) = ((s ∩ s′) ∪ (s \ c′) ∪ (s′ \ c), c ∪ c′)

when T : DotMap⟨_, _⟩
(m, c) ⊔ (m′, c′) = ({k 7→ v(k) | k ∈ domm ∪ domm′ ∧ v(k) ̸= ⊥}, c ∪ c′)

where v(k) = fst((m(k), c) ⊔ (m′(k), c))

Listing C.1: The join semilattice for δ-CRDTs, adapted from [1].

C.3 Example: Delta-State set CRDT

With the causal context and dot store above, we can now define our delta-state add-wins set in List-
ing C.2. A δ-CRDT add-wins set consists of a pair of a dot map and a causal context. For such a set,
when we add an element, the delta mutator addδ generates a singleton map from the element to a dot,
and the causal context is only concerned with the new tag and all the previous tags associated with the
added element. When we remove an element, the dot map is replaced with an empty map and the
causal context with all the previous tags associated with the element, this will cause the element e to
be removed during the next join (because it is in the causal context but not in the dot store, according

C3

C.3. EXAMPLE: DELTA-STATE SET CRDT

to the join rule in Listing C.1). Look-up is just examining the domain of the dot map, i.e. everything
that is in the dot map m is considered to be in the set.

AWSet⟨E⟩ = Causal⟨DotMap⟨E,DotSet⟩⟩
addδ

i (e, (m, c)) = ({e 7→ d}, d ∪m(e)) where d = {nexti(c)}
removeδi (e, (m, c)) = ({},m(e))

clearδi ((m, c)) = ({}, dots(m))

elements((m, c)) = domm

Listing C.2: δ-CRDT set specification, adapted from [1].

C4

Appendix D

Remove-wins set algorithm

An algorithm for the pure op-based RW-set is shown in Algorithm 3.

D1

Algorithm 3: Pure RW-set pseudocode, defined in terms of usual set operations. Note this
is pseudocode sacrifices efficiency for clarity. Ideas are taken from [4, 5, 6].
1 POLog← []
2 function add(e, t):
3 remove_redundant(e, t, add)
4 for (e′, t′, o′) ∈ POLog do
5 if redundant((e, t, add), (e′, t′, o′)) then
6 return

7 POLog← append(POLog, (e, t, add))

8 function delete (e, t):
9 remove_redundant(e, t, delete)

10 for (e′, t′, o′) ∈ POLog do
11 if redundant((e, t, delete), (e′, t′, o′)) then
12 return

13 POLog← append(POLog, (e, t, delete))

14 function read(k):
15 for (e, t, o) ∈ POLog do
16 if e.key = k then
17 nodel← true
18 for e, t, o ∈ POLog do
19 if e.key = k ∧ o = delete then
20 nodel← false

21 if nodel then
22 return e

23 return undefined

24 function remove_redundant (e, t, o):
25 for (e′, t′, o′) ∈ POLog do
26 if redundant((e′, t′, o′), (e, t, o)) then
27 POLog← remove(POLog, (e′, t′, o′))

28 function redundant ((e,t,o), (e’,t’,o’)):
/* check whether (e, t, o) is made redundant by (e′, t′, o′) */

29 if e = e′ ∧ t < t′ then
30 return true

31 else
32 return false

33 function reify(e, t, o):
34 remove_redundant(e, t, o)

D2

Appendix E

Evaluation set-up

E.1 Single machine specification

The single phyiscal machine has a AMD Ryzen 9 3900X 12-Core Processor and 16GiB DIMM DDR4
2667 MHz memory. It runs Ubuntu 22.04.2 LTS Operating System.

E.2 Cluster configuration

The cluster consists of 10 nodes within our own small, research cluster. These ten nodes are placed
inside three racks. Each node in the cluster has a 6-core Intel Xeon CPU E5-2430L @ 2.40GHz CPU
and 64GB of DDR3 memory. They all run Ubuntu 20.04 LTS operating system. There are 4 out of 9
worker nodes with hyper-threading enabled.

The average network latency between each machine connected via Ethernet is about 0.19ms* and
the average throughput is about 918Mbit s−1†.

*measured with ping(8) https://linux.die.net/man/8/ping
†measured with iperf(1) https://linux.die.net/man/1/iperf

E1

https://linux.die.net/man/8/ping
https://linux.die.net/man/1/iperf

Appendix F

Hypermnesia test suite output

The output of the Mnesia test suites, with the additional tests for Hypermnesia is listed below.

{mnesia_SUITE,all}.
[{4067,

{{mnesia_SUITE,all},
[{0,{crash,{mnesia_SUITE,app},{test_case_failed,4}}},
{0,{ok,{mnesia_SUITE,appup},[]}},
{233,
{{mnesia_SUITE,{group,light}},
[{1,

{{mnesia_SUITE,{group,install}},
[{1,

{{mnesia_install_test,all},
[{0,{ok,{mnesia_install_test,silly_durability},[]}},
{0,{ok,{mnesia_install_test,silly_move},[]}},
{1,{ok,{mnesia_install_test,silly_upgrade},[]}}]}}]}},

{0,
{{mnesia_SUITE,{group,nice}},
[{0,

{{mnesia_nice_coverage_test,all},
[{0,{ok,{mnesia_nice_coverage_test,nice},[]}}]}}]}},

{66,
{{mnesia_SUITE,{group,evil}},
[{66,

{{mnesia_evil_coverage_test,all},
[{0,{ok,{mnesia_evil_coverage_test,system_info},[]}},
{0,{ok,{mnesia_evil_coverage_test,table_info},[]}},
{0,{ok,{mnesia_evil_coverage_test,error_description},[]}},
{0,{ok,{mnesia_evil_coverage_test,db_node_lifecycle},[]}},
{0,{ok,{mnesia_evil_coverage_test,evil_delete_db_node},[]}},
{0,{ok,{mnesia_evil_coverage_test,start_and_stop},[]}},
{0,{ok,{mnesia_evil_coverage_test,checkpoint},[]}},
{0,{ok,{mnesia_evil_coverage_test,table_lifecycle},[]}},
{0,{ok,{mnesia_evil_coverage_test,storage_options},[]}},
{5,{ok,{mnesia_evil_coverage_test,add_copy_conflict},[]}},
{4,{ok,{mnesia_evil_coverage_test,add_copy_when_going_down},[]}},
{1,
{ok,{mnesia_evil_coverage_test,add_copy_when_dst_going_down},

[]}},
{3,{ok,{mnesia_evil_coverage_test,add_copy_with_down},[]}},
{3,{ok,{mnesia_evil_coverage_test,replica_management},[]}},
{1,{ok,{mnesia_evil_coverage_test,clear_table_during_load},[]}},
{0,{ok,{mnesia_evil_coverage_test,schema_availability},[]}},
{0,{ok,{mnesia_evil_coverage_test,local_content},[]}},
{0,
{{mnesia_evil_coverage_test,{group,table_access_modifications}},
[{0,

{ok,{mnesia_evil_coverage_test,change_table_access_mode},[]}},
{0,
{ok,{mnesia_evil_coverage_test,change_table_load_order},[]}},

{0,{ok,{mnesia_evil_coverage_test,set_master_nodes},[]}},
{0,
{ok,{mnesia_evil_coverage_test,offline_set_master_nodes},

[]}}]}},
{1,{ok,{mnesia_evil_coverage_test,replica_location},[]}},
{5,
{{mnesia_evil_coverage_test,{group,table_sync}},
[{0,{ok,{mnesia_evil_coverage_test,dump_tables},[]}},
{0,{ok,{mnesia_evil_coverage_test,dump_log},[]}},
{5,{ok,{mnesia_evil_coverage_test,wait_for_tables},[]}},
{0,{ok,{mnesia_evil_coverage_test,force_load_table},[]}}]}},

{0,{ok,{mnesia_evil_coverage_test,user_properties},[]}},
{0,{ok,{mnesia_evil_coverage_test,unsupp_user_props},[]}},

F1

{1,
{{mnesia_evil_coverage_test,{group,record_name}},
[{1,

{{mnesia_evil_coverage_test,{group,record_name_dirty_access}},
[{0,

{ok,{mnesia_evil_coverage_test,
record_name_dirty_access_ram},

[]}},
{0,
{ok,{mnesia_evil_coverage_test,

record_name_dirty_access_disc},
[]}},

{0,
{ok,{mnesia_evil_coverage_test,

record_name_dirty_access_disc_only},
[]}},

{0,
{ok,{mnesia_evil_coverage_test,

record_name_dirty_access_xets},
[]}}]}}]}},

{3,
{{mnesia_evil_coverage_test,{group,snmp_access}},
[{0,{ok,{mnesia_evil_coverage_test,snmp_open_table},[]}},
{0,{ok,{mnesia_evil_coverage_test,snmp_close_table},[]}},
{0,{ok,{mnesia_evil_coverage_test,snmp_get_next_index},[]}},
{1,{ok,{mnesia_evil_coverage_test,snmp_get_row},[]}},
{0,{ok,{mnesia_evil_coverage_test,snmp_get_mnesia_key},[]}},
{0,{ok,{mnesia_evil_coverage_test,snmp_update_counter},[]}},
{0,{ok,{mnesia_evil_coverage_test,snmp_order},[]}}]}},

{7,
{{mnesia_evil_coverage_test,{group,subscriptions}},
[{7,{ok,{mnesia_evil_coverage_test,subscribe_standard},[]}},
{0,{ok,{mnesia_evil_coverage_test,subscribe_extended},[]}}]}},

{0,
{{mnesia_evil_coverage_test,{group,iteration}},
[{0,{ok,{mnesia_evil_coverage_test,foldl},[]}}]}},

{0,
{{mnesia_evil_coverage_test,{group,debug_support}},
[{0,{ok,{mnesia_evil_coverage_test,info},[]}},
{0,{ok,{mnesia_evil_coverage_test,schema_0},[]}},
{0,{ok,{mnesia_evil_coverage_test,schema_1},[]}},
{0,{ok,{mnesia_evil_coverage_test,view_0},[]}},
{0,{ok,{mnesia_evil_coverage_test,view_1},[]}},
{0,{ok,{mnesia_evil_coverage_test,view_2},[]}},
{0,{ok,{mnesia_evil_coverage_test,lkill},[]}},
{0,{ok,{mnesia_evil_coverage_test,kill},[]}}]}},

{1,{ok,{mnesia_evil_coverage_test,sorted_ets},[]}},
{0,{ok,{mnesia_evil_coverage_test,index_cleanup},[]}},
{5,
{{mnesia_dirty_access_test,all},
[{0,

{{mnesia_dirty_access_test,{group,dirty_write}},
[{0,{ok,{mnesia_dirty_access_test,dirty_write_ram},[]}},
{0,{ok,{mnesia_dirty_access_test,dirty_write_disc},[]}},
{0,
{ok,{mnesia_dirty_access_test,dirty_write_disc_only},[]}},
{0,{ok,{mnesia_dirty_access_test,dirty_write_xets},[]}}]}},

{0,
{{mnesia_dirty_access_test,{group,dirty_read}},
[{0,{ok,{mnesia_dirty_access_test,dirty_read_ram},[]}},
{0,{ok,{mnesia_dirty_access_test,dirty_read_disc},[]}},
{0,{ok,{mnesia_dirty_access_test,dirty_read_disc_only},[]}},
{0,{ok,{mnesia_dirty_access_test,dirty_read_xets},[]}}]}},

{0,
{{mnesia_dirty_access_test,{group,dirty_update_counter}},
[{0,

{ok,{mnesia_dirty_access_test,dirty_update_counter_ram},
[]}},

{0,
{ok,{mnesia_dirty_access_test,dirty_update_counter_disc},

[]}},
{0,
{ok,{mnesia_dirty_access_test,

dirty_update_counter_disc_only},
[]}},

{0,
{ok,{mnesia_dirty_access_test,dirty_update_counter_xets},

[]}}]}},
{0,
{{mnesia_dirty_access_test,{group,dirty_delete}},

F2

APPENDIX F. HYPERMNESIA TEST SUITE OUTPUT

[{0,{ok,{mnesia_dirty_access_test,dirty_delete_ram},[]}},
{0,{ok,{mnesia_dirty_access_test,dirty_delete_disc},[]}},
{0,
{ok,{mnesia_dirty_access_test,dirty_delete_disc_only},[]}},
{0,{ok,{mnesia_dirty_access_test,dirty_delete_xets},[]}}]}},

{0,
{{mnesia_dirty_access_test,{group,dirty_delete_object}},
[{0,

{ok,{mnesia_dirty_access_test,dirty_delete_object_ram},
[]}},

{0,
{ok,{mnesia_dirty_access_test,dirty_delete_object_disc},

[]}},
{0,
{ok,{mnesia_dirty_access_test,

dirty_delete_object_disc_only},
[]}},

{0,
{ok,{mnesia_dirty_access_test,dirty_delete_object_xets},

[]}}]}},
{0,
{{mnesia_dirty_access_test,{group,dirty_match_object}},
[{0,

{ok,{mnesia_dirty_access_test,dirty_match_object_ram},[]}},
{0,
{ok,{mnesia_dirty_access_test,dirty_match_object_disc},

[]}},
{0,
{ok,{mnesia_dirty_access_test,

dirty_match_object_disc_only},
[]}},

{0,
{ok,{mnesia_dirty_access_test,dirty_match_object_xets},

[]}}]}},
{1,
{{mnesia_dirty_access_test,{group,dirty_index}},
[{0,

{{mnesia_dirty_access_test,
{group,dirty_index_match_object}},

[{0,
{ok,{mnesia_dirty_access_test,

dirty_index_match_object_ram},
[]}},

{0,
{ok,{mnesia_dirty_access_test,

dirty_index_match_object_disc},
[]}},

{0,
{ok,{mnesia_dirty_access_test,

dirty_index_match_object_disc_only},
[]}},

{0,
{ok,{mnesia_dirty_access_test,

dirty_index_match_object_xets},
[]}}]}},

{0,
{{mnesia_dirty_access_test,{group,dirty_index_read}},
[{0,

{ok,{mnesia_dirty_access_test,dirty_index_read_ram},
[]}},

{0,
{ok,{mnesia_dirty_access_test,dirty_index_read_disc},

[]}},
{0,
{ok,{mnesia_dirty_access_test,

dirty_index_read_disc_only},
[]}},

{0,
{ok,{mnesia_dirty_access_test,dirty_index_read_xets},

[]}}]}},
{0,
{{mnesia_dirty_access_test,{group,dirty_index_update}},
[{0,

{ok,{mnesia_dirty_access_test,
dirty_index_update_set_ram},

[]}},
{0,
{ok,{mnesia_dirty_access_test,

dirty_index_update_set_disc},
[]}},

F3

{0,
{ok,{mnesia_dirty_access_test,

dirty_index_update_set_disc_only},
[]}},

{0,
{ok,{mnesia_dirty_access_test,

dirty_index_update_set_xets},
[]}},

{0,
{ok,{mnesia_dirty_access_test,

dirty_index_update_bag_ram},
[]}},

{0,
{ok,{mnesia_dirty_access_test,

dirty_index_update_bag_disc},
[]}},

{0,
{ok,{mnesia_dirty_access_test,

dirty_index_update_bag_disc_only},
[]}},

{0,
{ok,{mnesia_dirty_access_test,

dirty_index_update_bag_xets},
[]}}]}}]}},

{0,
{{mnesia_dirty_access_test,{group,dirty_iter}},
[{0,{ok,{mnesia_dirty_access_test,dirty_iter_ram},[]}},
{0,{ok,{mnesia_dirty_access_test,dirty_iter_disc},[]}},
{0,{ok,{mnesia_dirty_access_test,dirty_iter_disc_only},[]}},
{0,{ok,{mnesia_dirty_access_test,dirty_iter_xets},[]}}]}},

{3,
{{mnesia_dirty_access_test,{group,admin_tests}},
[{0,{ok,{mnesia_dirty_access_test,del_table_copy_1},[]}},
{0,{ok,{mnesia_dirty_access_test,del_table_copy_2},[]}},
{0,{ok,{mnesia_dirty_access_test,del_table_copy_3},[]}},
{0,{ok,{mnesia_dirty_access_test,add_table_copy_1},[]}},
{0,{ok,{mnesia_dirty_access_test,add_table_copy_2},[]}},
{0,{ok,{mnesia_dirty_access_test,add_table_copy_3},[]}},
{0,{ok,{mnesia_dirty_access_test,add_table_copy_4},[]}},
{0,{ok,{mnesia_dirty_access_test,move_table_copy_1},[]}},
{0,{ok,{mnesia_dirty_access_test,move_table_copy_2},[]}},
{0,{ok,{mnesia_dirty_access_test,move_table_copy_3},[]}},
{0,{ok,{mnesia_dirty_access_test,move_table_copy_4},[]}}]}},

{0,
{ok,{mnesia_dirty_access_test,dirty_error_stacktrace},[]}}]}},

{5,
{{mnesia_trans_access_test,all},
[{0,{ok,{mnesia_trans_access_test,write},[]}},
{0,{ok,{mnesia_trans_access_test,read},[]}},
{0,{ok,{mnesia_trans_access_test,wread},[]}},
{0,{ok,{mnesia_trans_access_test,delete},[]}},
{0,{ok,{mnesia_trans_access_test,delete_object_bag},[]}},
{0,{ok,{mnesia_trans_access_test,delete_object_set},[]}},
{0,{ok,{mnesia_trans_access_test,match_object},[]}},
{0,{ok,{mnesia_trans_access_test,select},[]}},
{0,{ok,{mnesia_trans_access_test,select14},[]}},
{0,{ok,{mnesia_trans_access_test,all_keys},[]}},
{0,{ok,{mnesia_trans_access_test,transaction},[]}},
{2,
{{mnesia_trans_access_test,{group,nested_activities}},
[{0,{ok,{mnesia_trans_access_test,basic_nested},[]}},
{1,
{{mnesia_trans_access_test,{group,nested_transactions}},
[{0,

{ok,{mnesia_trans_access_test,nested_trans_both_ok},
[]}},

{0,
{ok,{mnesia_trans_access_test,nested_trans_child_dies},

[]}},
{0,
{ok,{mnesia_trans_access_test,nested_trans_parent_dies},

[]}},
{0,
{ok,{mnesia_trans_access_test,nested_trans_both_dies},

[]}}]}},
{1,
{ok,{mnesia_trans_access_test,mix_of_nested_activities},

[]}}]}},
{0,
{{mnesia_trans_access_test,{group,index_tabs}},

F4

APPENDIX F. HYPERMNESIA TEST SUITE OUTPUT

[{0,{ok,{mnesia_trans_access_test,index_match_object},[]}},
{0,{ok,{mnesia_trans_access_test,index_read},[]}},
{0,
{{mnesia_trans_access_test,{group,index_update}},
[{0,{ok,{mnesia_trans_access_test,index_update_set},[]}},
{0,
{ok,{mnesia_trans_access_test,index_update_bag},[]}}]}},

{0,{ok,{mnesia_trans_access_test,index_write},[]}},
{0,
{ok,{mnesia_trans_access_test,index_delete_object},[]}}]}},

{2,
{{mnesia_trans_access_test,{group,index_lifecycle}},
[{0,{ok,{mnesia_trans_access_test,add_table_index_ram},[]}},
{0,{ok,{mnesia_trans_access_test,add_table_index_disc},[]}},
{0,
{ok,{mnesia_trans_access_test,add_table_index_disc_only},

[]}},
{0,
{ok,{mnesia_trans_access_test,create_live_table_index_ram},

[]}},
{0,
{ok,{mnesia_trans_access_test,

create_live_table_index_disc},
[]}},

{0,
{ok,{mnesia_trans_access_test,

create_live_table_index_disc_only},
[]}},

{0,{ok,{mnesia_trans_access_test,del_table_index_ram},[]}},
{0,{ok,{mnesia_trans_access_test,del_table_index_disc},[]}},
{0,
{ok,{mnesia_trans_access_test,del_table_index_disc_only},

[]}},
{0,
{{mnesia_trans_access_test,{group,idx_schema_changes}},
[{0,

{ok,{mnesia_trans_access_test,idx_schema_changes_ram},
[]}},

{0,
{ok,{mnesia_trans_access_test,idx_schema_changes_disc},

[]}},
{0,
{ok,{mnesia_trans_access_test,

idx_schema_changes_disc_only},
[]}}]}}]}}]}},

{10,
{{mnesia_evil_backup,all},
[{0,{ok,{mnesia_evil_backup,backup},[]}},
{0,{ok,{mnesia_evil_backup,bad_backup},[]}},
{0,{ok,{mnesia_evil_backup,global_backup_checkpoint},[]}},
{3,
{{mnesia_evil_backup,{group,restore_tables}},
[{0,{ok,{mnesia_evil_backup,restore_errors},[]}},
{0,{ok,{mnesia_evil_backup,restore_clear},[]}},
{0,{ok,{mnesia_evil_backup,restore_keep},[]}},
{0,{ok,{mnesia_evil_backup,restore_recreate},[]}},
{0,{ok,{mnesia_evil_backup,restore_clear_ram},[]}}]}},

{0,{ok,{mnesia_evil_backup,traverse_backup},[]}},
{0,{ok,{mnesia_evil_backup,selective_backup_checkpoint},[]}},
{0,{ok,{mnesia_evil_backup,incremental_backup_checkpoint},[]}},
{2,{ok,{mnesia_evil_backup,install_fallback},[]}},
{1,{ok,{mnesia_evil_backup,uninstall_fallback},[]}},
{1,{ok,{mnesia_evil_backup,local_fallback},[]}},
{0,{ok,{mnesia_evil_backup,sops_with_checkpoint},[]}}]}}]}}]}},

{2,
{{mnesia_frag_test,{group,light}},
[{1,

{{mnesia_frag_test,{group,nice}},
[{0,{ok,{mnesia_frag_test,nice_single},[]}},
{0,{ok,{mnesia_frag_test,nice_multi},[]}},
{0,{ok,{mnesia_frag_test,nice_access},[]}},
{0,{ok,{mnesia_frag_test,iter_access},[]}}]}},

{0,
{{mnesia_frag_test,{group,evil}},
[{0,{ok,{mnesia_frag_test,evil_create},[]}},
{0,
{skip,

{mnesia_frag_test,evil_delete},
"Not yet implemented (NYI).\n"}},

{0,{ok,{mnesia_frag_test,evil_change},[]}},

F5

{0,{ok,{mnesia_frag_test,evil_combine},[]}},
{0,{ok,{mnesia_frag_test,evil_loop},[]}},
{0,{ok,{mnesia_frag_test,evil_delete_db_node},[]}}]}}]}},

{1,
{{mnesia_SUITE,{group,qlc}},
[{1,

{{mnesia_qlc_test,all},
[{0,

{{mnesia_qlc_test,{group,dirty}},
[{0,{ok,{mnesia_qlc_test,dirty_nice_ram_copies},[]}},
{0,{ok,{mnesia_qlc_test,dirty_nice_disc_copies},[]}},
{0,{ok,{mnesia_qlc_test,dirty_nice_disc_only_copies},[]}}]}},

{0,
{{mnesia_qlc_test,{group,trans}},
[{0,{ok,{mnesia_qlc_test,trans_nice_ram_copies},[]}},
{0,{ok,{mnesia_qlc_test,trans_nice_disc_copies},[]}},
{0,{ok,{mnesia_qlc_test,trans_nice_disc_only_copies},[]}},
{0,
{{mnesia_qlc_test,{group,atomic}},
[{0,{ok,{mnesia_qlc_test,atomic_eval},[]}}]}}]}},

{0,{ok,{mnesia_qlc_test,frag},[]}},
{0,{ok,{mnesia_qlc_test,info},[]}},
{0,{ok,{mnesia_qlc_test,mnesia_down},[]}}]}}]}},

{0,
{{mnesia_SUITE,{group,index_plugins}},
[{0,

{{mnesia_index_plugin_test,all},
[{0,{ok,{mnesia_index_plugin_test,add_rm_plugin},[]}},
{0,{ok,{mnesia_index_plugin_test,tab_with_plugin_index},[]}},
{0,
{ok,{mnesia_index_plugin_test,tab_with_multiple_plugin_indexes},

[]}},
{0,{ok,{mnesia_index_plugin_test,ix_match_w_plugin},[]}},
{0,{ok,{mnesia_index_plugin_test,ix_match_w_plugin_ordered},[]}},
{0,{ok,{mnesia_index_plugin_test,ix_match_w_plugin_bag},[]}},
{0,{ok,{mnesia_index_plugin_test,ix_update_w_plugin},[]}}]}}]}},

{0,
{{mnesia_SUITE,{group,registry}},
[{0,

{{mnesia_registry_test,all},
[{0,{ok,{mnesia_registry_test,good_dump},[]}},
{0,{ok,{mnesia_registry_test,bad_dump},[]}}]}}]}},

{108,
{{mnesia_SUITE,{group,config}},
[{109,
{{mnesia_config_test,all},
[{2,{ok,{mnesia_config_test,access_module},[]}},
{2,{ok,{mnesia_config_test,auto_repair},[]}},
{4,{ok,{mnesia_config_test,backup_module},[]}},
{10,{ok,{mnesia_config_test,debug},[]}},
{2,{ok,{mnesia_config_test,dir},[]}},
{16,{ok,{mnesia_config_test,dump_log_load_regulation},[]}},
{11,
{{mnesia_config_test,{group,dump_log_thresholds}},
[{8,{ok,{mnesia_config_test,dump_log_time_threshold},[]}},
{3,{ok,{mnesia_config_test,dump_log_write_threshold},[]}}]}},

{4,{ok,{mnesia_config_test,dump_log_update_in_place},[]}},
{8,{ok,{mnesia_config_test,event_module},[]}},
{2,{ok,{mnesia_config_test,backend_plugin_registration},[]}},
{4,{ok,{mnesia_config_test,inconsistent_database},[]}},
{0,{skip,{mnesia_config_test,max_wait_for_decision},'NYI'}},
{1,{ok,{mnesia_config_test,send_compressed},[]}},
{0,{ok,{mnesia_config_test,app_test},[]}},
{39,
{{mnesia_config_test,{group,schema_config}},
[{2,{ok,{mnesia_config_test,start_one_disc_full_then_one_disc_less},[]}},
{4,
{ok,{mnesia_config_test,start_first_one_disc_less_then_one_disc_full},

[]}},
{2,
{ok,{mnesia_config_test,start_first_one_disc_less_then_two_more_disc_less},

[]}},
{2,
{ok,{mnesia_config_test,schema_location_and_extra_db_nodes_combinations},

[]}},
{2,{ok,{mnesia_config_test,table_load_to_disc_less_nodes},[]}},
{10,{ok,{mnesia_config_test,schema_merge},[]}},
{16,
{{mnesia_config_test,{group,dynamic_connect}},
[{4,{ok,{mnesia_config_test,dynamic_basic},[]}},

F6

APPENDIX F. HYPERMNESIA TEST SUITE OUTPUT

{1,{ok,{mnesia_config_test,dynamic_ext},[]}},
{10,{ok,{mnesia_config_test,dynamic_bad},[]}}]}}]}},

{2,{ok,{mnesia_config_test,unknown_config},[]}}]}}]}},
{51,
{{mnesia_SUITE,{group,examples}},
[{51,

{{mnesia_examples_test,all},
[{0,{ok,{mnesia_examples_test,bup},[]}},
{0,{skip,{mnesia_examples_test,company},'NYI'}},
{0,{ok,{mnesia_examples_test,meter},[]}},
{51,
{{mnesia_examples_test,{group,tpcb}},
[{6,{ok,{mnesia_examples_test,replica_test},[]}},
{6,{ok,{mnesia_examples_test,sticky_replica_test},[]}},
{7,{ok,{mnesia_examples_test,dist_test},[]}},
{6,{ok,{mnesia_examples_test,conflict_test},[]}},
{6,{ok,{mnesia_examples_test,frag_test},[]}},
{6,{ok,{mnesia_examples_test,frag2_test},[]}},
{6,{ok,{mnesia_examples_test,remote_test},[]}},
{6,
{ok,{mnesia_examples_test,remote_frag2_test},[]}}]}}]}}]}}]}},

{930,
{{mnesia_SUITE,{group,medium}},
[{1,

{{mnesia_SUITE,{group,install}},
[{1,

{{mnesia_install_test,all},
[{0,{ok,{mnesia_install_test,silly_durability},[]}},
{0,{ok,{mnesia_install_test,silly_move},[]}},
{1,{ok,{mnesia_install_test,silly_upgrade},[]}}]}}]}},

{40,
{{mnesia_SUITE,{group,atomicity}},
[{40,

{{mnesia_atomicity_test,all},
[{0,

{ok,{mnesia_atomicity_test,explicit_abort_in_middle_of_trans},
[]}},

{0,
{ok,{mnesia_atomicity_test,runtime_error_in_middle_of_trans},

[]}},
{0,{ok,{mnesia_atomicity_test,kill_self_in_middle_of_trans},[]}},
{0,{ok,{mnesia_atomicity_test,throw_in_middle_of_trans},[]}},
{40,
{{mnesia_atomicity_test,{group,mnesia_down_in_middle_of_trans}},
[{8,

{ok,{mnesia_atomicity_test,mnesia_down_during_infinite_trans},
[]}},

{21,
{{mnesia_atomicity_test,{group,lock_waiter}},
[{0,{ok,{mnesia_atomicity_test,lock_waiter_sw_r},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_sw_rt},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_sw_wt},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_wr_r},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_srw_r},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_sw_sw},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_sw_w},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_sw_wr},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_sw_srw},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_wr_wt},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_srw_wt},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_wr_sw},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_srw_sw},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_wr_w},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_srw_w},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_r_sw},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_r_w},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_r_wt},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_rt_sw},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_rt_w},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_rt_wt},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_wr_wr},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_srw_srw},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_wt_r},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_wt_w},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_wt_rt},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_wt_wt},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_wt_wr},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_wt_srw},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_wt_sw},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_w_wr},[]}},

F7

{0,{ok,{mnesia_atomicity_test,lock_waiter_w_srw},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_w_sw},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_w_r},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_w_w},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_w_rt},[]}},
{0,{ok,{mnesia_atomicity_test,lock_waiter_w_wt},[]}}]}},

{11,
{{mnesia_atomicity_test,{group,restart_check}},
[{0,{ok,{mnesia_atomicity_test,restart_r_one},[]}},
{0,{ok,{mnesia_atomicity_test,restart_w_one},[]}},
{0,{ok,{mnesia_atomicity_test,restart_rt_one},[]}},
{0,{ok,{mnesia_atomicity_test,restart_wt_one},[]}},
{0,{ok,{mnesia_atomicity_test,restart_wr_one},[]}},
{0,{ok,{mnesia_atomicity_test,restart_sw_one},[]}},
{1,{ok,{mnesia_atomicity_test,restart_r_two},[]}},
{1,{ok,{mnesia_atomicity_test,restart_w_two},[]}},
{1,{ok,{mnesia_atomicity_test,restart_rt_two},[]}},
{1,{ok,{mnesia_atomicity_test,restart_wt_two},[]}},
{1,{ok,{mnesia_atomicity_test,restart_wr_two},[]}},
{0,
{ok,{mnesia_atomicity_test,restart_sw_two},

[]}}]}}]}}]}}]}},
{106,
{{mnesia_SUITE,{group,isolation}},
[{106,

{{mnesia_isolation_test,all},
[{105,

{{mnesia_isolation_test,{group,locking}},
[{0,{ok,{mnesia_isolation_test,no_conflict},[]}},
{0,{ok,{mnesia_isolation_test,simple_queue_conflict},[]}},
{12,{ok,{mnesia_isolation_test,advanced_queue_conflict},[]}},
{0,{ok,{mnesia_isolation_test,simple_deadlock_conflict},[]}},
{0,{ok,{mnesia_isolation_test,advanced_deadlock_conflict},[]}},
{1,{ok,{mnesia_isolation_test,schema_deadlock},[]}},
{1,{ok,{mnesia_isolation_test,lock_burst},[]}},
{26,
{{mnesia_isolation_test,{group,sticky_locks}},
[{1,

{ok,{mnesia_isolation_test,basic_sticky_functionality},
[]}},

{25,{ok,{mnesia_isolation_test,sticky_sync},[]}}]}},
{0,
{{mnesia_isolation_test,{group,unbound_locking}},
[{0,{ok,{mnesia_isolation_test,unbound1},[]}},
{0,{ok,{mnesia_isolation_test,unbound2},[]}}]}},

{57,
{{mnesia_isolation_test,{group,admin_conflict}},
[{0,{ok,{mnesia_isolation_test,create_table},[]}},
{4,{ok,{mnesia_isolation_test,delete_table},[]}},
{4,{ok,{mnesia_isolation_test,move_table_copy},[]}},
{4,{ok,{mnesia_isolation_test,add_table_index},[]}},
{4,{ok,{mnesia_isolation_test,del_table_index},[]}},
{4,{ok,{mnesia_isolation_test,transform_table},[]}},
{4,{ok,{mnesia_isolation_test,snmp_open_table},[]}},
{4,{ok,{mnesia_isolation_test,snmp_close_table},[]}},
{4,{ok,{mnesia_isolation_test,change_table_copy_type},[]}},
{4,{ok,{mnesia_isolation_test,change_table_access},[]}},
{4,{ok,{mnesia_isolation_test,add_table_copy},[]}},
{4,{ok,{mnesia_isolation_test,del_table_copy},[]}},
{4,{ok,{mnesia_isolation_test,dump_tables},[]}},
{5,
{{mnesia_isolation_test,{group,extra_admin_tests}},
[{0,{ok,{mnesia_isolation_test,del_table_copy_1},[]}},
{0,{ok,{mnesia_isolation_test,del_table_copy_2},[]}},
{0,{ok,{mnesia_isolation_test,del_table_copy_3},[]}},
{0,{ok,{mnesia_isolation_test,add_table_copy_1},[]}},
{0,{ok,{mnesia_isolation_test,add_table_copy_2},[]}},
{0,{ok,{mnesia_isolation_test,add_table_copy_3},[]}},
{0,{ok,{mnesia_isolation_test,add_table_copy_4},[]}},
{0,{ok,{mnesia_isolation_test,move_table_copy_1},[]}},
{0,{ok,{mnesia_isolation_test,move_table_copy_2},[]}},
{0,{ok,{mnesia_isolation_test,move_table_copy_3},[]}},
{0,
{ok,{mnesia_isolation_test,move_table_copy_4},

[]}}]}}]}},
{5,{ok,{mnesia_isolation_test,nasty},[]}}]}},

{0,
{{mnesia_isolation_test,{group,visibility}},
[{0,

{ok,{mnesia_isolation_test,dirty_updates_visible_direct},[]}},

F8

APPENDIX F. HYPERMNESIA TEST SUITE OUTPUT

{0,
{ok,{mnesia_isolation_test,dirty_reads_regardless_of_trans},

[]}},
{0,
{ok,{mnesia_isolation_test,

trans_update_invisibible_outside_trans},
[]}},

{0,
{ok,{mnesia_isolation_test,trans_update_visible_inside_trans},

[]}},
{0,{ok,{mnesia_isolation_test,write_shadows},[]}},
{0,{ok,{mnesia_isolation_test,delete_shadows},[]}},
{0,{ok,{mnesia_isolation_test,write_delete_shadows_bag},[]}},
{0,{ok,{mnesia_isolation_test,write_delete_shadows_bag2},[]}},
{0,
{{mnesia_isolation_test,{group,iteration}},
[{0,{ok,{mnesia_isolation_test,foldl},[]}},
{0,{ok,{mnesia_isolation_test,first_next},[]}}]}},

{0,{ok,{mnesia_isolation_test,shadow_search},[]}},
{0,{ok,{mnesia_isolation_test,snmp_shadows},[]}}]}}]}}]}},

{63,
{{mnesia_SUITE,{group,durability}},
[{63,

{{mnesia_durability_test,all},
[{52,

{{mnesia_durability_test,{group,load_tables}},
[{4,{ok,{mnesia_durability_test,load_latest_data},[]}},
{0,
{ok,{mnesia_durability_test,load_local_contents_directly},

[]}},
{0,
{ok,{mnesia_durability_test,

load_directly_when_all_are_ram_copiesA},
[]}},

{0,
{ok,{mnesia_durability_test,

load_directly_when_all_are_ram_copiesB},
[]}},

{4,
{{mnesia_durability_test,

{group,late_load_when_all_are_ram_copies_on_ram_nodes}},
[{2,

{ok,{mnesia_durability_test,
late_load_all_ram_cs_ram_nodes1},

[]}},
{2,
{ok,{mnesia_durability_test,

late_load_all_ram_cs_ram_nodes2},
[]}}]}},

{20,
{ok,{mnesia_durability_test,

load_when_last_replica_becomes_available},
[]}},

{0,
{ok,{mnesia_durability_test,

load_when_down_from_all_other_replica_nodes},
[]}},

{0,
{skip,

{mnesia_durability_test,
late_load_transforms_into_disc_load},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_durability_test,late_load_leads_to_hanging},
"Mnesia is not debug compiled, test case ignored.\n"}},

{3,
{ok,{mnesia_durability_test,

force_load_when_nobody_intents_to_load},
[]}},

{0,
{skip,

{mnesia_durability_test,
force_load_when_someone_has_decided_to_load},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{ok,{mnesia_durability_test,

force_load_when_someone_else_has_loaded},
[]}},

{0,

F9

{ok,{mnesia_durability_test,force_load_when_we_has_loaded},
[]}},

{0,
{ok,{mnesia_durability_test,force_load_on_a_non_local_table},

[]}},
{0,
{ok,{mnesia_durability_test,

force_load_when_the_table_does_not_exist},
[]}},

{19,
{{mnesia_durability_test,

{group,load_tables_with_master_tables}},
[{4,{ok,{mnesia_durability_test,master_nodes},[]}},
{2,{ok,{mnesia_durability_test,starting_master_nodes},[]}},
{4,
{ok,{mnesia_durability_test,master_on_non_local_tables},

[]}},
{0,
{ok,{mnesia_durability_test,

remote_force_load_with_local_master_node},
[]}},

{3,
{ok,{mnesia_durability_test,master_node_with_ram_copy_2},

[]}},
{4,
{ok,{mnesia_durability_test,master_node_with_ram_copy_3},

[]}}]}}]}},
{7,
{{mnesia_durability_test,{group,durability_of_dump_tables}},
[{5,{ok,{mnesia_durability_test,dump_ram_copies},[]}},
{1,{ok,{mnesia_durability_test,dump_disc_copies},[]}},
{1,{ok,{mnesia_durability_test,dump_disc_only},[]}}]}},

{1,{ok,{mnesia_durability_test,durability_of_disc_copies},[]}},
{1,
{ok,{mnesia_durability_test,durability_of_disc_only_copies},

[]}}]}}]}},
{159,
{{mnesia_SUITE,{group,recovery}},
[{159,

{{mnesia_recovery_test,all},
[{21,

{{mnesia_recovery_test,{group,mnesia_down}},
[{2,

{{mnesia_recovery_test,{group,mnesia_down_during_startup}},
[{2,

{ok,{mnesia_recovery_test,
mnesia_down_during_startup_disk_ram},

[]}},
{0,
{skip,

{mnesia_recovery_test,
mnesia_down_during_startup_init_ram},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
mnesia_down_during_startup_init_disc},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
mnesia_down_during_startup_init_disc_only},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
mnesia_down_during_startup_tm_ram},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
mnesia_down_during_startup_tm_disc},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
mnesia_down_during_startup_tm_disc_only},

"Mnesia is not debug compiled, test case ignored.\n"}}]}},
{10,
{{mnesia_recovery_test,{group,master_node_tests}},

F10

APPENDIX F. HYPERMNESIA TEST SUITE OUTPUT

[{0,{ok,{mnesia_recovery_test,no_master_2},[]}},
{2,{ok,{mnesia_recovery_test,no_master_3},[]}},
{0,{ok,{mnesia_recovery_test,one_master_2},[]}},
{1,{ok,{mnesia_recovery_test,one_master_3},[]}},
{0,{ok,{mnesia_recovery_test,two_master_2},[]}},
{2,{ok,{mnesia_recovery_test,two_master_3},[]}},
{0,{ok,{mnesia_recovery_test,all_master_2},[]}},
{2,{ok,{mnesia_recovery_test,all_master_3},[]}}]}},

{5,
{{mnesia_recovery_test,{group,read_during_down}},
[{2,{ok,{mnesia_recovery_test,dirty_read_during_down},[]}},
{2,
{ok,{mnesia_recovery_test,trans_read_during_down},[]}}]}},

{1,
{{mnesia_recovery_test,{group,with_checkpoint}},
[{0,{ok,{mnesia_recovery_test,with_checkpoint_same},[]}},
{1,{ok,{mnesia_recovery_test,with_checkpoint_other},[]}}]}},

{0,{ok,{mnesia_recovery_test,delete_during_start},[]}}]}},
{15,
{{mnesia_recovery_test,{group,explicit_stop}},
[{15,

{ok,{mnesia_recovery_test,explicit_stop_during_snmp},[]}}]}},
{0,{ok,{mnesia_recovery_test,coord_dies},[]}},
{2,
{{mnesia_recovery_test,{group,schema_trans}},
[{2,

{{mnesia_schema_recovery_test,all},
[{0,

{{mnesia_schema_recovery_test,
{group,interrupted_before_log_dump}},

[{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_create_ram},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_create_disc},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_create_do},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_create_nostore},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_delete_ram},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_delete_disc},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_delete_do},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_add_ram},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_add_disc},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_add_do},

"Mnesia is not debug compiled, test case ignored.\n"}},

F11

{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_add_kill_copier},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_move_ram},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_move_disc},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_move_do},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_move_kill_copier},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_delcopy_ram},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_delcopy_disc},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_delcopy_do},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_delcopy_kill_copier},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_addindex_ram},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_addindex_disc},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_addindex_do},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_delindex_ram},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_delindex_disc},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_delindex_do},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_change_type_ram2disc},

"Mnesia is not debug compiled, test case ignored.\n"}},

F12

APPENDIX F. HYPERMNESIA TEST SUITE OUTPUT

{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_change_type_ram2do},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_change_type_disc2ram},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_change_type_disc2do},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_change_type_do2ram},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_change_type_do2disc},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_change_type_other_node},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_before_change_schema_type},

"Mnesia is not debug compiled, test case ignored.\n"}}]}},
{2,
{{mnesia_schema_recovery_test,

{group,interrupted_after_log_dump}},
[{0,

{ok,{mnesia_schema_recovery_test,
interrupted_after_create_ram},

[]}},
{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_create_disc},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_create_do},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_create_nostore},
[]}},

{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_after_delete_ram},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_after_delete_disc},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_after_delete_do},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_add_ram},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_add_disc},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_add_do},

F13

[]}},
{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_add_kill_copier},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_move_ram},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_move_disc},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_move_do},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_move_kill_copier},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_delcopy_ram},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_delcopy_disc},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_delcopy_do},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_delcopy_kill_copier},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_addindex_ram},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_addindex_disc},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_addindex_do},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_delindex_ram},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_delindex_disc},
[]}},

{0,
{ok,{mnesia_schema_recovery_test,

interrupted_after_delindex_do},
[]}},

{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_after_change_type_ram2disc},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_after_change_type_ram2do},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_after_change_type_disc2ram},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_after_change_type_disc2do},

F14

APPENDIX F. HYPERMNESIA TEST SUITE OUTPUT

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_after_change_type_do2ram},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_after_change_type_do2disc},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_after_change_type_other_node},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_schema_recovery_test,
interrupted_after_change_schema_type},

"Mnesia is not debug compiled, test case ignored.\n"}}]}}]}}]}},
{0,
{{mnesia_recovery_test,{group,async_dirty}},
[{0,

{skip,
{mnesia_recovery_test,async_dirty_pre_kill_part},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,async_dirty_pre_kill_coord_node},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,async_dirty_pre_kill_coord_pid},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,async_dirty_post_kill_part},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,async_dirty_post_kill_coord_node},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,async_dirty_post_kill_coord_pid},
"Mnesia is not debug compiled, test case ignored.\n"}}]}},

{0,
{{mnesia_recovery_test,{group,sync_dirty}},
[{0,

{skip,
{mnesia_recovery_test,sync_dirty_pre_kill_part},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,sync_dirty_pre_kill_coord_node},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,sync_dirty_pre_kill_coord_pid},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,sync_dirty_post_kill_part},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,sync_dirty_post_kill_coord_node},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,sync_dirty_post_kill_coord_pid},
"Mnesia is not debug compiled, test case ignored.\n"}}]}},

{0,
{{mnesia_recovery_test,{group,sym_trans}},
[{0,

{skip,
{mnesia_recovery_test,

sym_trans_before_commit_kill_coord_node},
"Mnesia is not debug compiled, test case ignored.\n"}},

F15

{0,
{skip,

{mnesia_recovery_test,
sym_trans_before_commit_kill_coord_pid},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
sym_trans_before_commit_kill_part_after_ask},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
sym_trans_before_commit_kill_part_before_ask},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
sym_trans_after_commit_kill_coord_node},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
sym_trans_after_commit_kill_coord_pid},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
sym_trans_after_commit_kill_part_after_ask},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
sym_trans_after_commit_kill_part_do_commit_pre},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
sym_trans_after_commit_kill_part_do_commit_post},

"Mnesia is not debug compiled, test case ignored.\n"}}]}},
{0,
{{mnesia_recovery_test,{group,asym_trans}},
[{0,

{skip,
{mnesia_recovery_test,asymtrans_part_ask},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,asymtrans_part_commit_vote},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,asymtrans_part_pre_commit},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,asymtrans_part_log_commit},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,asymtrans_part_do_commit},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,asymtrans_coord_got_votes},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,asymtrans_coord_pid_got_votes},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,asymtrans_coord_log_commit_rec},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,asymtrans_coord_pid_log_commit_rec},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

F16

APPENDIX F. HYPERMNESIA TEST SUITE OUTPUT

{mnesia_recovery_test,asymtrans_coord_log_commit_dec},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,asymtrans_coord_pid_log_commit_dec},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_recovery_test,
asymtrans_coord_rec_acc_pre_commit_log_commit},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
asymtrans_coord_pid_rec_acc_pre_commit_log_commit},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
asymtrans_coord_rec_acc_pre_commit_done_commit},

"Mnesia is not debug compiled, test case ignored.\n"}},
{0,
{skip,

{mnesia_recovery_test,
asymtrans_coord_pid_rec_acc_pre_commit_done_commit},

"Mnesia is not debug compiled, test case ignored.\n"}}]}},
{0,{skip,{mnesia_recovery_test,after_full_disc_partition},'NYI'}},
{116,
{{mnesia_recovery_test,{group,after_corrupt_files}},
[{10,

{ok,{mnesia_recovery_test,
after_corrupt_files_decision_log_head},

[]}},
{10,
{ok,{mnesia_recovery_test,

after_corrupt_files_decision_log_tail},
[]}},

{10,
{ok,{mnesia_recovery_test,

after_corrupt_files_latest_log_head},
[]}},

{10,
{ok,{mnesia_recovery_test,

after_corrupt_files_latest_log_tail},
[]}},

{22,
{ok,{mnesia_recovery_test,after_corrupt_files_table_dat_head},

[]}},
{10,
{ok,{mnesia_recovery_test,after_corrupt_files_table_dat_tail},

[]}},
{22,
{ok,{mnesia_recovery_test,

after_corrupt_files_schema_dat_head},
[]}},

{22,
{ok,{mnesia_recovery_test,

after_corrupt_files_schema_dat_tail},
[]}}]}},

{1,{ok,{mnesia_recovery_test,disc_less},[]}},
{2,{ok,{mnesia_recovery_test,garb_decision},[]}},
{0,{skip,{mnesia_recovery_test,system_upgrade},'NYI'}}]}}]}},

{559,
{{mnesia_SUITE,{group,consistency}},
[{559,

{{mnesia_consistency_test,all},
[{83,

{{mnesia_consistency_test,{group,consistency_after_restart}},
[{13,

{ok,{mnesia_consistency_test,consistency_after_restart_1_ram},
[]}},

{13,
{ok,{mnesia_consistency_test,

consistency_after_restart_1_disc},
[]}},

{13,
{ok,{mnesia_consistency_test,

consistency_after_restart_1_disc_only},
[]}},

{13,

F17

{ok,{mnesia_consistency_test,consistency_after_restart_2_ram},
[]}},

{14,
{ok,{mnesia_consistency_test,

consistency_after_restart_2_disc},
[]}},

{14,
{ok,{mnesia_consistency_test,

consistency_after_restart_2_disc_only},
[]}}]}},

{23,
{{mnesia_consistency_test,{group,consistency_after_dump_tables}},
[{11,

{ok,{mnesia_consistency_test,
consistency_after_dump_tables_1_ram},

[]}},
{12,
{ok,{mnesia_consistency_test,

consistency_after_dump_tables_2_ram},
[]}}]}},

{63,
{{mnesia_consistency_test,{group,consistency_after_add_replica}},
[{10,

{ok,{mnesia_consistency_test,
consistency_after_add_replica_2_ram},

[]}},
{10,
{ok,{mnesia_consistency_test,

consistency_after_add_replica_2_disc},
[]}},

{10,
{ok,{mnesia_consistency_test,

consistency_after_add_replica_2_disc_only},
[]}},

{10,
{ok,{mnesia_consistency_test,

consistency_after_add_replica_3_ram},
[]}},

{10,
{ok,{mnesia_consistency_test,

consistency_after_add_replica_3_disc},
[]}},

{10,
{ok,{mnesia_consistency_test,

consistency_after_add_replica_3_disc_only},
[]}}]}},

{63,
{{mnesia_consistency_test,{group,consistency_after_del_replica}},
[{10,

{ok,{mnesia_consistency_test,
consistency_after_del_replica_2_ram},

[]}},
{10,
{ok,{mnesia_consistency_test,

consistency_after_del_replica_2_disc},
[]}},

{10,
{ok,{mnesia_consistency_test,

consistency_after_del_replica_2_disc_only},
[]}},

{10,
{ok,{mnesia_consistency_test,

consistency_after_del_replica_3_ram},
[]}},

{10,
{ok,{mnesia_consistency_test,

consistency_after_del_replica_3_disc},
[]}},

{10,
{ok,{mnesia_consistency_test,

consistency_after_del_replica_3_disc_only},
[]}}]}},

{65,
{{mnesia_consistency_test,

{group,consistency_after_move_replica}},
[{10,

{ok,{mnesia_consistency_test,
consistency_after_move_replica_2_ram},

[]}},
{10,

F18

APPENDIX F. HYPERMNESIA TEST SUITE OUTPUT

{ok,{mnesia_consistency_test,
consistency_after_move_replica_2_disc},

[]}},
{11,
{ok,{mnesia_consistency_test,

consistency_after_move_replica_2_disc_only},
[]}},

{10,
{ok,{mnesia_consistency_test,

consistency_after_move_replica_3_ram},
[]}},

{10,
{ok,{mnesia_consistency_test,

consistency_after_move_replica_3_disc},
[]}},

{11,
{ok,{mnesia_consistency_test,

consistency_after_move_replica_3_disc_only},
[]}}]}},

{3,
{{mnesia_consistency_test,

{group,consistency_after_transform_table}},
[{1,

{ok,{mnesia_consistency_test,
consistency_after_transform_table_ram},

[]}},
{0,
{ok,{mnesia_consistency_test,

consistency_after_transform_table_disc},
[]}},

{1,
{ok,{mnesia_consistency_test,

consistency_after_transform_table_disc_only},
[]}}]}},

{0,
{skip,

{mnesia_consistency_test,
consistency_after_change_table_copy_type},

'NYI'}},
{8,
{{mnesia_consistency_test,{group,consistency_after_restore}},
[{1,

{ok,{mnesia_consistency_test,
consistency_after_restore_clear_ram},

[]}},
{1,
{ok,{mnesia_consistency_test,

consistency_after_restore_clear_disc},
[]}},

{1,
{ok,{mnesia_consistency_test,

consistency_after_restore_clear_disc_only},
[]}},

{1,
{ok,{mnesia_consistency_test,

consistency_after_restore_recreate_ram},
[]}},

{1,
{ok,{mnesia_consistency_test,

consistency_after_restore_recreate_disc},
[]}},

{1,
{ok,{mnesia_consistency_test,

consistency_after_restore_recreate_disc_only},
[]}}]}},

{0,
{skip,

{mnesia_consistency_test,consistency_after_rename_of_node},
'NYI'}},

{248,
{{mnesia_consistency_test,

{group,checkpoint_retainer_consistency}},
[{141,

{{mnesia_consistency_test,
{group,updates_during_checkpoint_activation}},

[{15,
{ok,{mnesia_consistency_test,

updates_during_checkpoint_activation_1_ram},
[]}},

{15,

F19

{ok,{mnesia_consistency_test,
updates_during_checkpoint_activation_1_disc},

[]}},
{15,
{ok,{mnesia_consistency_test,

updates_during_checkpoint_activation_1_disc_only},
[]}},

{15,
{ok,{mnesia_consistency_test,

updates_during_checkpoint_activation_2_ram},
[]}},

{15,
{ok,{mnesia_consistency_test,

updates_during_checkpoint_activation_2_disc},
[]}},

{15,
{ok,{mnesia_consistency_test,

updates_during_checkpoint_activation_2_disc_only},
[]}},

{16,
{ok,{mnesia_consistency_test,

updates_during_checkpoint_activation_3_ram},
[]}},

{16,
{ok,{mnesia_consistency_test,

updates_during_checkpoint_activation_3_disc},
[]}},

{16,
{ok,{mnesia_consistency_test,

updates_during_checkpoint_activation_3_disc_only},
[]}}]}},

{32,
{{mnesia_consistency_test,

{group,updates_during_checkpoint_iteration}},
[{10,

{ok,{mnesia_consistency_test,
updates_during_checkpoint_iteration_2_ram},

[]}},
{10,
{ok,{mnesia_consistency_test,

updates_during_checkpoint_iteration_2_disc},
[]}},

{10,
{ok,{mnesia_consistency_test,

updates_during_checkpoint_iteration_2_disc_only},
[]}}]}},

{3,
{{mnesia_consistency_test,

{group,load_table_with_activated_checkpoint}},
[{1,

{ok,{mnesia_consistency_test,
load_table_with_activated_checkpoint_ram},

[]}},
{1,
{ok,{mnesia_consistency_test,

load_table_with_activated_checkpoint_disc},
[]}},

{1,
{ok,{mnesia_consistency_test,

load_table_with_activated_checkpoint_disc_only},
[]}}]}},

{0,
{{mnesia_consistency_test,

{group,add_table_copy_to_table_checkpoint}},
[{0,

{ok,{mnesia_consistency_test,
add_table_copy_to_table_checkpoint_ram},

[]}},
{0,
{ok,{mnesia_consistency_test,

add_table_copy_to_table_checkpoint_disc},
[]}},

{0,
{ok,{mnesia_consistency_test,

add_table_copy_to_table_checkpoint_disc_only},
[]}}]}},

{71,
{{mnesia_consistency_test,{group,consistency_after_fallback}},
[{10,

{ok,{mnesia_consistency_test,

F20

APPENDIX F. HYPERMNESIA TEST SUITE OUTPUT

consistency_after_fallback_2_ram},
[]}},

{10,
{ok,{mnesia_consistency_test,

consistency_after_fallback_2_disc},
[]}},

{13,
{ok,{mnesia_consistency_test,

consistency_after_fallback_2_disc_only},
[]}},

{11,
{ok,{mnesia_consistency_test,

consistency_after_fallback_3_ram},
[]}},

{11,
{ok,{mnesia_consistency_test,

consistency_after_fallback_3_disc},
[]}},

{14,
{ok,{mnesia_consistency_test,

consistency_after_fallback_3_disc_only},
[]}}]}}]}},

{0,
{{mnesia_consistency_test,{group,backup_consistency}},
[{0,

{{mnesia_consistency_test,
{group,interupted_install_fallback}},

[{0,
{skip,

{mnesia_consistency_test,inst_fallback_process_dies},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_consistency_test,fatal_when_inconsistency},
"Mnesia is not debug compiled, test case ignored.\n"}}]}},

{0,
{{mnesia_consistency_test,

{group,interupted_uninstall_fallback}},
[{0,

{skip,
{mnesia_consistency_test,after_delete},
"Mnesia is not debug compiled, test case ignored.\n"}}]}},

{0,
{{mnesia_consistency_test,

{group,mnesia_down_during_backup_causes_switch}},
[{0,

{skip,
{mnesia_consistency_test,cause_switch_before},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_consistency_test,cause_switch_after},
"Mnesia is not debug compiled, test case ignored.\n"}}]}},

{0,
{{mnesia_consistency_test,

{group,mnesia_down_during_backup_causes_abort}},
[{0,

{skip,
{mnesia_consistency_test,cause_abort_before},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_consistency_test,cause_abort_after},
"Mnesia is not debug compiled, test case ignored.\n"}}]}},

{0,
{{mnesia_consistency_test,

{group,schema_transactions_during_backup}},
[{0,

{skip,
{mnesia_consistency_test,change_schema_before},
"Mnesia is not debug compiled, test case ignored.\n"}},

{0,
{skip,

{mnesia_consistency_test,change_schema_after},
"Mnesia is not debug compiled, test case ignored.\n"}}]}}]}}]}}]}},

{0,
{{mnesia_SUITE,{group,majority}},
[{0,

{{mnesia_majority_test,all},
[{0,{ok,{mnesia_majority_test,write},[]}},

F21

{0,{ok,{mnesia_majority_test,wread},[]}},
{0,{ok,{mnesia_majority_test,delete},[]}},
{0,{ok,{mnesia_majority_test,clear_table},[]}},
{0,{ok,{mnesia_majority_test,frag},[]}},
{0,{ok,{mnesia_majority_test,change_majority},[]}},
{0,{ok,{mnesia_majority_test,frag_change_majority},[]}}]}}]}},

{0,
{{mnesia_frag_test,{group,medium}},
[{0,

{skip,
{mnesia_frag_test,consistency},
"Not yet implemented (NYI).\n"}}]}}]}},

{2903,
{{mnesia_SUITE,{group,heavy}},
[{2903,

{{mnesia_SUITE,{group,measure}},
[{2903,

{{mnesia_measure_test,all},
[{2903,

{{mnesia_measure_test,{group,benchmarks}},
[{26,

{{mnesia_measure_test,{group,meter}},
[{5,{ok,{mnesia_measure_test,ram_meter},[]}},
{6,{ok,{mnesia_measure_test,disc_meter},[]}},
{13,{ok,{mnesia_measure_test,disc_only_meter},[]}}]}},

{1,{ok,{mnesia_measure_test,cost},[]}},
{1,{ok,{mnesia_measure_test,dbn_meters},[]}},
{2874,
{{mnesia_measure_test,{group,tpcb}},
[{937,{ok,{mnesia_measure_test,ram_tpcb},[]}},
{945,{ok,{mnesia_measure_test,disc_tpcb},[]}},
{991,
{ok,{mnesia_measure_test,disc_only_tpcb},

[]}}]}}]}}]}}]}}]}},
{0,{ok,{mnesia_SUITE,clean_up_suite},[]}}]}}].

F22

	Introduction
	Motivation
	Challenges
	Contributions
	Outline

	Background
	Consistency models
	Mnesia
	Design goals
	Architecture
	Data representation
	Access contexts
	Consistency and availability

	CRDTs
	State-based CRDTs
	Operation-based CRDTs

	Summary

	Related work
	Databases and eventual consistency
	Mnesia and eventual consistency
	Key-value stores
	Multi-version concurrency control
	Augmenting existing embedded databases

	CRDTs research
	Systems using CRDTs
	Time and space improvements

	Design and implementation
	Design
	API design
	Choosing a CRDT

	Implementation overview
	Causal Broadcast
	Causal broadcast server
	Tagged causal stable broadcast

	Pure operation-based Set CRDT
	Causal Redundancy
	Causal stability
	Broadcast and CRDT algorithms
	Practical concerns

	Fault tolerance
	Communication failure
	Transient failure

	Summary

	Evaluation
	Setup
	Correctness
	Benchmarking
	Benchmark overview
	Number of generators
	Cluster size
	Workload types
	Table size

	Space overhead
	Fault tolerance
	APIs and refactoring
	Summary

	Conclusions
	Accomplishments
	Future work

	Bibliography
	Appendices
	Benchmark configuration file
	Repository and demo
	State-based CRDTs details
	Properties
	Delta-state CRDTs
	Example: Delta-State set CRDT

	Remove-wins set algorithm
	Evaluation set-up
	Single machine specification
	Cluster configuration

	Hypermnesia test suite output

